# math

posted by .

An initial-value problem is given by the differential equation,
f(x,y)=-20xy^2, y(1)=1.

Use the classical fourth-order Runge-Kutta method with a step-size of h=0.02, to obtain the approximate value of y(1.02). Give your answer to 6 decimal places.

## Similar Questions

1. ### Calculus

Use Euler's method with step size 0.2 to estimate y(1.4), where y(x) is the solution of the initial-value problem below. Give your answer correct to 4 decimal places. y' = x - xy y(1) = 0 h = 0.2 Since I am at y(1) = 0 and not y(0) …
2. ### calculus

Use Euler's method with given values of to obtain an approximation of the initial value problem when x=3 . Round your answers to four decimal places, if necessary. dy/dx= x+y, y(0) =3 n=4, y(3)= n=6, y(3)=
3. ### math

An initial-value problem is given by the differential equation, f(x,y)=x(1-y^2), y(1)=0.07 Use the Euler-trapezoidal method with a step-size h = 0.1, to obtain the approximate value of y(1.1). Give your answer to 4 decimal places.
4. ### math

Consider the initial value problem, f(x,y) = y(18.06 - y), y(0) = 12. The exact solution of the problem increases from y(0) =12 to y = 18.06 as x increases without limit. Determine the minimum upper bound of h for the classical 4th-order …
5. ### math

An initial-value problem is given by the differential equation, f(x,y) = x + y, y(0) = 1.64 The Euler-midpoint method is used to find an approximate value to y(0.1) with a step size of h = 0.1. Then use the integrating factor method, …
6. ### Maths

An initial-value problem is given by the differential equation, f(x,y) = –20xy2, y(1) = 1. Use the classical fourth-order Runge-Kutta method with a step-size of h = 0.02, to obtain the approximate value of y(1.02). Give your answer …
7. ### maths

An initial-value problem is given by the differential equation, f(x,y) = x + y, y(0) = 1.64 The Euler-midpoint method is used to find an approximate value to y(0.1) with a step size of h = 0.1. Then use the integrating factor method, …
8. ### PLEEEEEAAAASE HELP WITH DIFFERENTIAL EQ PROBLEMS!!

1) What are the equilibrium solutions to the differential equation and determine if it is stable or unstable with the initial condition y(-4)=1: 0.1(y+2)(4-y) 2) Use Euler's method with step size=0.5 and initial condition y(0)=3 to …
9. ### calculus

1.Solve the differential equation dy/dx= y^2/x^3 for y=f(x) with the condition y(1) = 1. 2.Solve the differential equation y prime equals the product of 2 times x and the square root of the quantity 1 minus y squared. Explain why the …
10. ### Calculus

Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initial-value problem given below. (Round your answer to four decimal places.) y' = 1 − xy y(0) = 0 I don't even know how to start!

More Similar Questions