Physics

posted by .

Runner A is initially 2.4 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 2.2 km east of the flagpole and is running with a constant velocity of 7.4 km/h due west. What will be the distance of the two runners from the flagpole when their paths cross?

Answer: ____ km from the flagpole due (east, west, south or north)

  • Physics -

    Xa= -2.4 + 8.4 t
    Xb = 2.2 - 7.4 t
    (positive direction is east)

    Set Xa = Xb and solve for t (in hours). Use that to calculate Xa or Xb at that time.

    -2.4 + 8.4t = 2.2 -7.4 t
    t = 0.291 hours = 17.5 minutes
    Xa = Xb = 0.047 km (east of flagpole)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    Runner A is initially 4.6 km west of a flagpole and is running with a constant velocity of 4.8 km/h due east. Runner B is initially 7.4 km east of the flagpole and is running with a constant velocity of 6.4 km/h due west. What will …
  2. Physics

    Runner A is initially 7.0 km west of a flagpole and is running with a constant velocity of 6.5 km/h due east. Runner B is initially 8.0 km east of the flagpole and is running with a constant velocity of 7.5 km/h due west. How far are …
  3. physics

    Runner A is initially 6.0 km west of a flagpole and is running with a constant velocity of 4.5 km/h due east. Runner B is initially 8.0 km east of the flagpole and is running with a constant velocity of 6.5 km/h due west -How much …
  4. Physics

    Runner A is initially 2.4 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 2.2 km east of the flagpole and is running with a constant velocity of 7.4 km/h due west. What will …
  5. Physics

    Runner A is initially 3.4 km west of a flagpole and is running with a constant velocity of 5.2 km/h due east. Runner B is initially 5.6 km east of the flagpole and is running with a constant velocity of 5.0 km/h due west. What will …
  6. Physics

    Runner A is initially 5.3km west of a flagpole and is running with a constant velocity of 8.8km/hr due east. Runner B is initially 4.2km east of the flagpole and is running with a constant velocity of 7.9km/hr due west. How far are …
  7. physics

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 4.5 km east of the flagpole and is running with a constant velocity of 7.1 km/h due west. How far are …
  8. physics

    Runner A is initially 6.0 km west of a flagpole and is running with a constant velocity of 7.8 km/h due east. Runner B is initially 4.2 km east of the flagpole and is running with a constant velocity of 7.6 km/h due west. What will …
  9. physics

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.1 km/h due east. Runner B is initially 4.7 km east of the flagpole and is running with a constant velocity of 7.8 km/h due west. How far are …
  10. PHYSICS

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.1 km/h due east. Runner B is initially 4.7 km east of the flagpole and is running with a constant velocity of 7.8 km/h due west. How far are …

More Similar Questions