math

posted by .

how to find the following limit :

lim lnx/lgx
x->infinity

  • math -

    If lg(x) = log2x, then since

    lgx = lnx/ln2,

    lnx/lgx = ln2 for all x.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus - ratio test

    infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n->infinity) | [(e^n+1)/((n+1)!)] / [(e^n)/(n!)] | = lim (n->infinity) | [(e^n+1)/((n+1)!)] * [(n!)/(e^n)] | = lim (n->infinity) | ((e^n)(e^1)(n!)) …
  2. Pre-cal

    Please determine the following limits if they exist. If the limit does not exist put DNE. lim 2+6x-3x^2 / (2x+1)^2 x-> - infinity lim 4n-3 / 3n^2+2 n-> infinity I did lim 2+6x-3x^2 / (2x+1)^2 x-> - infinity (2+6x-3x²)/(4x²+4x+1) …
  3. calculus

    The limit as x approaches infinity of (e^x+x)^(1/x). I got that it diverges, but I'm not sure if I made a mistake. My work: lim(e+x^(1/x)) lim(e+(1/x^x)) lim(ex^x+1)/x^x l'hopital:lim(e^(e(lnx+1))+1)/e^(lnx+1) diverges?
  4. Calc. Limits

    Are these correct? lim x->0 (x)/(sqrt(x^2+4) - 2) I get 4/0= +/- infinity so lim x->0+ = + infinity?
  5. calc

    Are these correct? lim x->0 (x)/(sqrt(x^2+4) - 2) I get 4/0= +/- infinity so lim x->0+ = + infinity?
  6. Calculus

    Find the limit as x approaches infinity of (lnx)^(1/x). This unit is on L'Hopital's rule. I know that the answer is 1, I just don't know how to get there. I tried taking the ln of everything so that you have ln(the whole limit) = limx-->infinity …
  7. Calculus help, please!

    1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 9 The limit …
  8. Calculus, please check my answers!

    1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 ***The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 ***2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 ***9 …
  9. Check my CALCULUS work, please! :)

    Question 1. lim h->0(sqrt 49+h-7)/h = 14 1/14*** 0 7 -1/7 Question 2. lim x->infinity(12+x-3x^2)/(x^2-4)= -3*** -2 0 2 3 Question 3. lim x->infinity (5x^3+x^7)/(e^x)= infinity*** 0 -1 3 Question 4. Given that: x 6.8 6.9 6.99 …
  10. Math

    Find the limit if it exists. lim 1/(x-2) = infinity x→2+ lim 1/(x-2) = negative infinity x→2- lim 1/(x-2) = Does not exist x→2 lim (3x+2) = infinity x→∞ lim 999/(x^3) = 0 x→-∞ Can someone check …

More Similar Questions