precalc

posted by .

use power reducing identities to prove the identity

sin^4x=1/8(3-4cos2x+cos4x)


cos^3x=(1/2cosx) (1+cos2x)

thanks :)

  • precalc -

    cos 2x = 2cos^2 x - 1
    so, 1/2 cos x (1+2cos^2 x - 1) = cos^3 x

    cos 4x = 1 - 2sin^2 2x
    = 1 - 8sin^2 x cos^2 x
    = 1 - 8sin^2 x (1 - sin^2 x)
    = 1 - 8sin^2 x + 8 sin^4 x

    cos 2x = 1 - 2sin^2 x
    4cos 2x = 4 - 8sin^2 x

    1/8(3-4cos2x+cos4x)
    = 1/8(3 - 4 + 8sin^2 x + 1 - 8sin^2 x + 8 sin^4 x)
    = 1/8(8sin^4 x)
    = sin^4 x

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calc

    Where do I start to prove this identity: sinx/cosx= 1-cos2x/sin2x please help!! Hint: Fractions are evil. Get rid of them. Well, cos2x = cos 2 x - sin 2 x, so 1-coscx = 1 - cos 2 x - sin 2 x = 1 - cos 2 x + sin 2 x You should be able …
  2. Trig

    prove the identity (sinX)^6 +(cosX)^6= 1 - 3(sinX)^2 (cosX)^2 sinX^6= sinx^2 ^3 = (1-cosX^2)^3 = (1-2CosX^2 + cos^4) (1-cosX^2) then multiply that out 1-2CosX^2 + cos^4 - cosX^2 + 2cos^4 -cos^6 add that on the left to the cos^6, and …
  3. Mathematics - Trigonometric Identities

    Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
  4. Mathematics - Trigonometric Identities

    Prove: sin^2x - sin^4x = cos^2x - cos^4x What I have, LS = (sinx - sin^2x) (sinx + sin^2x) = (sinx - 1 -cos^2x) (sinx + 1 - cos^2x) = sin^2x + sinx - sinx - cos^2xsinx - cos^2xsinx - 1 - 1 + cos^4x = sin^2x - 2cos^2xsinx - 2 + cos^4x …
  5. Math - Trig - Double Angles

    Prove: cos4x = 8cos^4x - 8cos^2x + 1 My Attempt: RS: = 4cos^2x (2cos^2x - 1) + 1 = 4 cos^2x (cos2x) + 1 LS: = cos2(2x) = 2cos^2(2x) - 1 = (cos^2(2)) - cos^2(2x)) - 1 ----- Prove: 8cos^4x = cos4x + 4cos2x + 3 My Attempt: RS: = cos2(2x) …
  6. trig

    how can you confirm the identity cos^4x = (1/8)(3+ 4cos2x+ cos4x) and sin4x = (4sinxcosx)(2cos^2x-1)
  7. Precalc

    Prove or disprove the following identity. cos(-x) - sin(-x) = cos(x) + sin(x)
  8. trig

    I keep trying to find the power reducing formula for sin^4(x), but I can't seem to get all the fractional parts correct. The answer I should be getting is: sin^4(x)=(1/8)cos4x-(1/2)cos2x+(3/8) I can only get this far knowing feeling …
  9. Precalculus with Trigonometry

    Prove or disprove the following identity: (sin(10x))/(sin(x)+sin(9x)) = (cos(5x))/(cos4x))
  10. Trig identies, Calculus

    Use the identities cos^2 x + sin^2 x =1 and cos2x=cos^2 x -sin^2 x to show that cos^4 x -sin^4 x = cos2x Im not sure how, I can solve my problem with half angle identities but im not sure where to start with this.

More Similar Questions