# statistics

posted by .

Assume that women's heights are normally distributed with a mean=63.6 in. and standard deviation = 2.5 in.

a) To be eligible for the US Marine Corps, a woman must have a height between 58 in. and 73 in. Find the percentage of women who satisfy that requirement.

b)If the requirement is changed to exclude the shortest 1% and exclude the tallest 1%, find the heights that are acceptable.

• statistics -

Use z-scores for both a) and b).

Formula:

z = (x - mean)/sd

a) Find both z-scores.
First z: x = 58, mean = 63.6, sd = 2.5
Second z: x = 73, mean = 63.6, sd = 2.5

Once you have both z-scores, check a z-table for the probability between the two scores. Convert to a percentage.

b) Find the two z-scores using a z-table for the shortest 1% and the tallest 1%. Once you have both z-scores, find x for both using the formula above, then go from there.

I hope this will help get you started.

## Similar Questions

1. ### Statistics

Assume the heights of women are normally distributed with a mean given by 63.6 inches and a standard deviation given by 2.5 inches, the US Army requires women's height to be between 58 and 80 inches. Find the percentage of women meeting …
2. ### statistics

The heights of American women aged 18 to 24 are normally distributed with a mean of 66 inches and a standard deviation of 2.5 inches. In order to serve in the U.S. Army, women must be between 57 inches and 79 inches tall. What percentage …
3. ### statistics

The heights of American women aged 18 to 24 are normally distributed with a mean of 66 inches and a standard deviation of 2.5 inches. In order to serve in the U.S. Army, women must be between 57 inches and 79 inches tall. What percentage …
4. ### statistics

Assume that women's heights are normally distributed with a mean given by u=64.6 in and a standard deviation given by 0=2.8in. a) If 1 woman is randomly selected, find the probability that her height is less than 65in. b) If 49 women …
5. ### Statustics

A survey found that women’s heights are normally distributed with mean 63.4 in and standard deviation 2.5 in. A branch of the military requires women’s heights to be between 58 in and 80 in. a. Find the percentage of women meeting …
6. ### statistics

A survey found that women's heights are normally distributed with mean 63.5 in. and standard deviation 2.3 in. The survey also found that men's heights are normally distributed with a mean 68.7 in. and a standard deviation 2.8. (a) …
7. ### Statistics/Probability

Assume that women’s heights are normally distributed with a mean given by μ = 63.4 in, and a standard deviation given by σ = 2.3 in. (a) If 1 woman is randomly selected, find the probability that her height is less than …
8. ### statistics

A survey found that women's heights are normally distributed with mean 62.4 in and standard deviation 2.8 in. The survey also found that men's heights are normally distributed with a mean of 68.9 in. and standard deviation 2.8. Complete …