# Physics

posted by .

A block of mass m = 2.00 kg rests on the left edge of a block of mass M = 8.00 kg. The
coefficient of kinetic friction between the two blocks is 0.300, and the surface on which the 8.00-
kg block rests is frictionless. A constant horizontal force of magnitude F = 10.0 N is applied to
the 2.00-kg block, setting it in motion across the top of the lower block. If the distance across the
larger block is 3.00 m (from front edge of smaller block to rightmost edge of larger block),
(a) how long will it take the smaller block make it to the right side of the 8.00-kg block. (b) How
far will the 8.00-kg block move in this time?

• Physics -

m1=2 kg, m2=8 kg, μ=0.3, F=10 N.

For m1:
m1•g=N,
m1•a1=F-F(fr) = F- μ•N=F- μ•m1•g.
a1=F/m1 - μ•g = 10/2 -0.3•9.8 = 2.06 m/s²

For m2:
m2•a2=F(fr)
a2=F(fr)/m2= μ•m1•g/m2 = 0.3•2•9.8/8 = 0.735 m/s².

Distances
x1=a1•t²/2,
x2=a2•t²/2,

x1=x2+L,
a1•t²/2 = a2•t²/2 + L,
Solve for t
t=2.13 s.
x2=a2•t²/2= 1.67 m

## Similar Questions

1. ### physics

The coefficient of static friction is 0.604 between two blocks. The coefficient of kinetic friction between the lower block and the floor is 0.115. Force F causes both blocks to cross a distance of 3.93 m, starting from rest. What …
2. ### mechanics

Q2. A block of massmrests on the left edge of a block of larger massM. The coefficient of kinetic friction between the two blocks is , and the surface on which the larger block rests is frictionless. A constant horizontal force of …
3. ### physics

A block with mass = 5.0 rests on a frictionless table and is attached by a horizontal spring ( = 130N ) to a wall. A second block, of mass = 1.35 , rests on top of the block . The coefficient of static friction between the two blocks …
4. ### physics

A block with mass = 5.0 rests on a frictionless table and is attached by a horizontal spring ( = 130N ) to a wall. A second block, of mass = 1.35 , rests on top of the block . The coefficient of static friction between the two blocks …
5. ### Physics

A block of mass m1 is on top of a block of mass m2. Block 2 is connected by an ideal rope passing through a pulley to a block of unknown mass m3 as shown. The pulley is massless and frictionless. There is friction between block 1 and …
6. ### Physics

A block with mass M = 5.00 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a wall. A second block, of mass m = 1.25 kg rests on top of M. The blocks are displaced by 10 cm then released. If …
7. ### Physics

A block M1 of mass 13.0 kg sits on top of a larger block M2 of mass 23.0 kg which sits on a flat surface. The kinetic friction coefficient between the upper and lower block is 0.440. The kinetic friction coefficient between the lower …
8. ### Physics

A force of 12.7 N pulls horizontally on a 1.4-kg block that slides on a rough, horizontal surface. This block is connected by a horizontal string to a second block of mass m2 = 2.32 kg on the same surface. The coefficient of kinetic …
9. ### physics

A block of mass M rests on a block of mass M1 = 5.00 kg which is on a tabletop. A light string passes over a frictionless peg and connects the blocks. The coefficient of kinetic friction mk at both surfaces equals 0.330. A force of …
10. ### Physics

A 5.00-kg block is placed on top of a 10.0-kg block which rests on a horizontal surface. The 5.00-kg block is tied to a wall with a horizontal string. A 45.0-N horizontal force directed away from the wall is then exerted on the 10.0-kg …

More Similar Questions