Calculus

posted by .

differentiate each function

a) y = (cscx)(cotx)

b) y = x^2 + e^(2x)

  • Calculus -

    y = csc cot
    y' = (-csc*cot) * cot - csc*csc^2
    = -csc*cot^2 - csc^3
    = -csc(csc^2+cot^2)

    y = x^2+e^(2x)
    y' = 2x + 2e^(2x)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    express in sinx 1 1 ---------- + -------- cscx + cotx cscx - cotx and express in cosx 1 + cot x ------- - sin^2x cscx = 1/sinx so what do i do w. that extra one on the top!?
  2. trig

    express this in sinx (1/ cscx + cotx )+ (1/cscx- cotx) i got 2sinx is that right?
  3. drwls

    My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to …
  4. Pre-Calculus

    Find a numerical value of one trigonometric function of x if tanx/cotx - secx/cosx = 2/cscx a) cscx=1 b) sinx=-1/2 c)cscx=-1 d)sinx=1/2
  5. Precalculus

    Simplify:[(cscx-cotx)(cscx+cotx)]/cscx
  6. Math

    prove:(cscx-cotx)^4 x (cscx+cotx)^4 = 1
  7. Trigonometry

    prove:(cscx-cotx)^4 x (cscx+cotx)^4 = 1
  8. ap calc bc

    hi! ok, i know that deriv(cscx) = -cscxcotx and that deriv(cos) = -sinx deriv(cotx) = -((cscx)^2) my question is: is this (statements below) correct?
  9. trig

    Prove (cscx+cotx)(cscx-cotx)=1
  10. Pre Calculus

    (secx)/(tanx)+(cscx)/(cotx)=secx+cscx Please help me verify this trigonometric identity.

More Similar Questions