Calculus

posted by .

evaluate the limit:

lim cos(x + pi/2)/x
x->0

  • Calculus -

    cos(x+pi/2)
    = cosx cos pi/2 - sinx sin pi/2
    = 0 - sinx
    = -sinx

    so
    limit cos(x+pi/2)/x as x----> o
    = lim -sinx/x , x ---> 0
    = -1

    using the fact that lim sinx/x = 1

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    yes! tnk u ok? It's actually (x->0.) Find the limit of cot(x)-csc(x) as x approached 0?
  2. CALCULUS - need help!

    Determine the limit of the trigonometric function (if it exists). 1. lim sin x / 5x (x -> 0) 2. lim tan^2x / x (x ->0) 3. lim cos x tan x / x (x -> 0)
  3. calculus

    calculate the lim as x-> pi (cos(x)+1)/(x-pi) using the special limit lim x->0 sinx/x
  4. math

    i need some serious help with limits in pre-calc. here are a few questions that i really do not understand. 1. Evaluate: lim (3x^3-2x^2+5) x--> -1 2. Evaluate: lim [ln(4x+1) x-->2 3. Evaluate: lim[cos(pi x/3)] x-->2 4. Evaluate: …
  5. Calculus

    Evaluate each limit. If it exists. a) Lim x^3 + 1 x->1 ------- x + 1 b) Lim 3x^2 - x^3 x->0 ---------- x^3 + 4x^2 c) Lim 16 - x x->16 --------- (√x) - 4
  6. Calculus. Limits. Check my answers, please! :)

    4. lim (tanx)= x->pi/3 -(sqrt3) 1 (sqrt3) ***-1 The limit does not exist. 5. lim |x|= x->-2 -2 ***2 0 -1 The limit does not exist. 6. lim [[x]]= x->9/2 (Remember that [[x]] represents the greatest integer function of x.) 4 …
  7. Calculus help, please!

    1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 9 The limit …
  8. Calculus, please check my answers!

    1. Evaluate: lim x->infinity(x^4-7x+9)/(4+5x+x^3) 0 1/4 1 4 ***The limit does not exist. 2. Evaluate: lim x->infinity (2^x+x^3)/(x^2+3^x) 0 1 3/2 ***2/3 The limit does not exist. 3. lim x->0 (x^3-7x+9)/(4^x+x^3) 0 1/4 1 ***9 …
  9. Calculus

    Evaluate the following limit. lim e^(tanx) as x approaches the righter limit of (pi/2)
  10. Calculus

    The area A of the region S that lies under the graph of the continuous function is the limit of the sum of the areas of approximating rectangles. A = lim n → ∞ [f(x1)Δx + f(x2)Δx + . . . + f(xn)Δx] Use this …

More Similar Questions