# Fluid Mechanics

posted by .

Water at 600F flows steadily through a horizontal circular divergent duct and discharges into the atmosphere as shown. A manometer with a fluid of SG=2.0 is placed between the two cross-sections with diameters D1 = 0.5 ft and D2 = 0.7 ft. Assuming inviscid flow, determine:
(a) The pressure difference (P2 - P1) at the centerline between these two sections.
(b) The velocities V1 and V2 at the two sections.
(c) The volume flow rate Q, and the velocity V3 at the exit section with diameter D3 = 1 ft.

• Fluid Mechanics -

Is the water really at 600 F? Or do you mean 60 degrees F?

I would need to see the figure to make sense of this. It looks like a place to apply the steady state continuity and Bernoulli equations.

## Similar Questions

1. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
2. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
3. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
4. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
5. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
6. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
7. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
8. ### fluid

"A liquid with specific gravity 0.8 flows at the rate of 3 l/s through a venturimeter of diameters 6 cm and 4 cm. if the manometer fluid is mercury (sp. gr=13.6) determine the value of manometer reading,h.
9. ### Fluid Mechanics

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
10. ### physicss

An ideal fluid flows through a pipe made of two sections with diameters of 1.0 and 3.0 inches, respectively. What is the ratio of the speed of the fluid through the 3.0-inch section to the speed of the fluid through the 1.0-inch section?

More Similar Questions