# calculus

posted by .

1. Find the area of the region bounded by f(x)=x^2 +6x+9 and g(x)=5(x+3). Show the integral used, the limits of integration and how to evaluate the integral.
2. Find the area of the region bounded by x=y^2+6, x=0 , y=-6, and y=7. Show all work required in #1.
3. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about y=3. Show the integral and give an exact answer.

• calculus -

There are 3 questions here.
You show no work , nor do you tell us where your difficulty is.

I will start you off with #1

we need their intersection points
x^2 + 6x + 9 = 5x + 15
x^2 + x - 6 = 0
(x+3)(x-2) = 0
x = -3 or x = 2
if x = -3, y = 0
if x = 2 , y = 25

from x = -3 to x = 2, g(x) > f(x), so the effective height
= 5x + 15 - x^2 - 6x - 9
= 6 - x - x^2

Area = ∫(6 - x - x^2) dx from x = -3 to 2
= [6x - (1/2)x^2 - (1/3)x^3] from -3 to 2
= (12 - (1/2)(4) - (1/3)(8) ) - (-18 - (1/2)(9) - (1/3)(-27) )
= 12 - 2 - 8/3 + 18 - 9/2 + 9
= 179/6

• calculus -

the answer is 125/6 not 179/6 for problem no. 1

## Similar Questions

1. ### calculus

let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4. a) find the area of R b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of …
2. ### Calculus AB

Let R be the region bounded by the graphs of y=sin(pi x) and y=(x^3)-4x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line y=-2, x=2, x=-1. Write, but do not evaluate, an integral expression for the area.
3. ### integral calculus

FIND THE AREA OF THE REGION BOUNDED BY THE CURVES Y= X^2 + 4X + 3 AND Y= x-1.
4. ### calculus

Use a double integral to find the area of the smaller region bounded by the spiral rtheta=1, the circles r=1 and r=3, and the polar axis. I just need help with setting up the integral.
5. ### Calculus

Let f be the function given by f(x)=(x^3)/4 - (x^2)/3 - x/2 + 3cosx. Let R be the shaded region in the second quadrant bounded by the graph of f, and let S be the shaded region bounded by the graph of f and line l, the line tangent …
6. ### calc 3

1. Evaluate the given integral by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse 36x^2+25y^2=1. L= double integral R (4sin(144x^2+100y^2) dA. 2. Use the given transformation …
7. ### Calculus check

The functions f and g are given by f(x)=sqrt(x^3) and g(x)=16-2x. Let R be the region bounded by the x-axis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write, but …
8. ### AP Calculus AB

Which integral gives the area of the region in the first quadrant bounded by the axes, y = e^x, x = e^y, and the line x = 4?