trig
posted by Anonymous .
Prove that if Sinx=5/13 and Siny=12/13, where x and y angles in Q1, then Sin(x+y)=1

sin ( x ) = 5 / 12
cos ( x ) = + OR  sqrt [ 1  sin ^ 2 ( x ) ]
cos ( x ) = + OR  sqrt [ 1  ( 5 / 1 3 ) ^ 2 ]
cos ( x ) = + OR  sqrt ( 1  25 / 169 )
cos ( x ) = + OR  sqrt ( 169 / 169  25 / 169 )
cos ( x ) = + OR  sqrt ( 144 / 169 )
cos ( x ) = + OR  12 / 13
In quaqdrant I cosine are positive so
cos ( x ) = 12 / 13
sin ( y ) = 12 / 13
cos ( y ) = + OR  sqrt [ 1  sin ^ 2 ( y ) ]
cos ( y ) = + OR  sqrt [ 1  ( 12 / 1 3 ) ^ 2 ]
cos ( y ) = + OR  sqrt ( 1  144 / 169 )
cos ( y ) = + OR  sqrt ( 169 / 169  144 / 169 )
cos ( y ) = + OR  sqrt ( 25 / 169 )
cos ( y ) = + OR  5 / 13
In quaqdrant I cosine are positive so
cos ( y ) = 5 / 13
sin ( x + y ) = sin ( x ) * cos ( y ) + cos ( x ) * sin ( y )
sin ( x + y ) = ( 5 / 13 ) * ( 5 / 13 ) + ( 12 / 13 ) * ( 12 / 13 )
sin ( x + y ) = 25 / 169 + 144 / 169
sin ( x + y ) = 169 / 169 = 1
Respond to this Question
Similar Questions

Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
Mathematics  Trigonometric Identities
Prove: sin^2x  sin^4x = cos^2x  cos^4x What I have, LS = (sinx  sin^2x) (sinx + sin^2x) = (sinx  1 cos^2x) (sinx + 1  cos^2x) = sin^2x + sinx  sinx  cos^2xsinx  cos^2xsinx  1  1 + cos^4x = sin^2x  2cos^2xsinx  2 + cos^4x … 
Math  Trig  Double Angles
Prove: sin2x / 1  cos2x = cotx My Attempt: LS: = 2sinxcosx /  1  (1  2sin^2x) = 2sinxcosx /  1 + 2sin^2x = cosx / sinx  1 = cosx / sinx  1/1 = cosx / sinx  sinx / sinx  Prove: 2sin(x+y)sin(xy) = cos2y  cos2x My Attempt: … 
Trig
Sin(Xy)sin(x+y)=sin^2 x  sin^2 y work on one side only...so i worked on the right =(sinxsiny)(sinx+siny) does that equal sin(xy)sin(x+y)? 
trig!!
Sin(Xy)sin(x+y)=sin^2 x  sin^2 y work on one side only...so i worked on the right =(sinxsiny)(sinx+siny) does that equal sin(xy)sin(x+y)? 
trig
Okay, I've been getting some of these, but I can't seem to verify this identity... any help? 
Trig Help
Prove the following: [1+sinx]/[1+cscx]=tanx/secx =[1+sinx]/[1+1/sinx] =[1+sinx]/[(sinx+1)/sinx] =[1+sinx]*[sinx/(sinx+1)] =[sinx+sin^2x]/[sinx+1] =[sinx+(1cos^2x)]/[sinx+1] =? 
pre cal
Verify each identity sin^x+siny/sinxsiny=tan(x+y/2) (times) cot(xy/2) 
Advanced Funtions
Are there any angles x and y that satisfy sin(x+y)= sinx+siny? 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know …