Post a New Question

Physics

posted by .

Suppose an electron was bound to a proton as in the hydrogen atom, but by the gravitational force rather than by the electric force. What would be the radius and energy of the first Bohr orbit?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    The hydrogen atom consists of a proton with an electron in orbit about the proton. The laws of quantum mechanics determine that the radius of this orbit is 5.29x10^-11 meters. Therefore, calculate a) The electric potential the electron …
  2. Physics

    Q: From the Bohr model of the Hydrogen atom, calculate the minimum amount of energy (in eV) an electron in the lowest orbital would need to free it from its proton (i.e., to ionize the atom). A: would I use the equation: En = - 13.6 …
  3. physics

    The Bohr model of the hydrogen atom consists of an electron travelling in a circular orbit of radius 5.29 x 10-11 m around a proton. The attraction between the two gives the electron the centripetal force required to stay in orbit. …
  4. PHYSICS

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  5. physics

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  6. PHYSICS

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  7. college physics

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  8. college physics

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  9. PHYSICS

    In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.542 multiplied by 10-10 m. (The actual value is 0.529 multiplied by 10-10 m.) (a) Find …
  10. PHYSICS

    Compare the electric force holding the electron in orbit (r=0.53×10−10m) around the proton nucleus of the hydrogen atom, with the gravitational force between the same electron and proton. What is the ratio of these two forces?

More Similar Questions

Post a New Question