physics

posted by .

A cylinder of mass M=58 kg, radius R=1.3 m and moment of inertia I=(1/2)MR2 is initially rotating around its central axis with an angular velocity ωi= 1.8 rad/s. A tangential force F of constant magnitude applied to the edge of the cylinder during 5.9 s brings it to rest. What is the magnitude of the force F?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics- Elena please help!

    A large grinding wheel in the shape of a solid cylinder of radius 0.450m is free to rotate on a frictionless, vertical axle. A constant tangential force of 180 N applied to its edge causes the wheel to have an angular acceleration …
  2. physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 260 N applied to its edge causes the wheel to have an angular acceleration …
  3. physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 250 N applied to its edge causes the wheel to have an angular acceleration …
  4. Physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 300 N applied to its edge causes the wheel to have an angular acceleration …
  5. Physics Classical Mechanics

    A playground merry-go-round has a radius of R= 2 m and has a moment of inertia Icm= 9×103kg⋅m2 about a vertical axis passing through the center of mass. There is negligible friction about this axis. Two children each of mass …
  6. PHYSICS (HELP)

    A playground merry-go-round has a radius of R= 2 m and has a moment of inertia Icm= 9×103kg⋅m2 about a vertical axis passing through the center of mass. There is negligible friction about this axis. Two children each of mass …
  7. Physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 200 N applied to its edge causes the wheel to have an angular acceleration …
  8. physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 280 N applied to its edge causes the wheel to have an angular acceleration …
  9. Physics

    A 2.1-kg 15-cm-radius cylinder, initially at rest, is free to rotate about the axis of the cylinder. A rope of negligible mass is wrapped around it and pulled with a force of 14 N. (a) Find the magnitude of the torque exerted by the …
  10. physics

    A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 270 N applied to its edge causes the wheel to have an angular acceleration …

More Similar Questions