Cal
posted by McClain .
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem.
y' = 5x + y^2, y(0)=1.
y(1)=
Respond to this Question
Similar Questions

cal
Use Euler's method with step size0.4 to estimatey(2) , where y(x) is the solution of the initialvalue problem y'=4x+y^2, y(0)=1. . y(2)= 
calculus 2
Use euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'= 3x+y^2, y(0)=1 
calculus 2
Use euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'= 3x+y^2, y(0)=1 
calculus
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem. y' = 5x + y^2, y(0)=1. 
CAL 2
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem y'=5x+y^2, y(0)=1 y(1)= 
Really need help in Calculus Problem?!
Use Euler's method with step size .2 to estimate y(.4), where y(x) is the solution of the initial value problem y=x+y^2, y=0. Repeat part a with step size .1 
calculus
Use Euler's method with step size .2 to estimate y(.4), where y(x) is the solution of the initial value problem y=x+y^2, y=0. Repeat part a with step size .1 
Calculus
Use Euler's method with step size 0.2 to estimate y(1), where y(x) is the solution of the initialvalue problem given below. (Round your answer to four decimal places.) y' = 1 − xy y(0) = 0 I don't even know how to start! 
calc 2
Use Euler's method with step size 0.5 to compute the approximate yvalues y1, y2, y3 and y4 of the solution of the initialvalue problem y' = y − 3x, y(4) = 0. 
calculus 2
Use Euler's method with a step size of 0.2 to estimate y(1), where y(x) is the solution of the initial value problem y' = 6x+y^2, y(0)=0. Round your final answer to 4 places, but keep more places on the intermediate steps for accuracy.