Calculus I

posted by .

Show that the equation x^4 + 4x + c = 0 has at most two real roots.

I believe we're supposed to prove this by proof of contradiction using Rolle's Theorem, but I'm not quite sure how to do this problem.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calc

    Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers "c" that satisfy the conclusion of Rolle's Theorem. f(x)=sin4pix , [-1/2,1/2] Well according to Rolle's Theorem, …
  2. AP Calculus

    Show that the equation x^3 - 15x + c = o has exactly one real root. All I know is that it has something to do with the Mean Value Theorem/Rolle's Theorem.
  3. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  4. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  5. calc

    by applying rolle's theorem, check whether it is possible that the function f(x) = x^5 + x -17 has two real roots. your reason is that if f(x) has two real roots then by rolle's theorem, f'(x) must be equal to what at certain value …
  6. Calculus (Please Check)

    Show that the equation x^5+x+1 = 0 has exactly one real root. Name the theorems you use to prove it. I.V.T. *f(x) is continuous *Lim x-> inf x^5+x+1 = inf >0 *Lim x-> -inf x^5+x+1 = -inf <0 Rolles *f(c)=f(d)=0 *f(x) is …
  7. Math help please

    In this problem you will use Rolle's theorem to determine whether it is possible for the function f(x) = 8 x^{7} + 7 x - 13 to have two or more real roots (or, equivalently, whether the graph of y = f(x) crosses the x-axis two or more …
  8. Calculus

    By applying Rolle's theorem, check whether it is possible that the function f(x)=x^5+x−5 has two real roots. Answer: (input possible or impossible ) Your reason is that if f(x) has two real roots then by Rolle's theorem: f′(x) …
  9. Math

    Let f(x) = 2x + 1 − sin(x), how many roots does f(x) have in the interval [−π, π]?
  10. Proof by contradiction

    Use proof by contradiction to show there is no real number x: 4x^2+1/4x <1

More Similar Questions