Trigonometry
posted by Stephen .
The expression log(x^n/ radical y)is equivalent to
1. n log x  1/2 log y
2. n log x 2 log y
3. log (nx)  log (1/2y)
4. log (nx)  log (2y)

Same style as your post below this.
Give it a try.
btw, don't switch names
Respond to this Question
Similar Questions

math
write as a single logarithm: 2logbase3(1/x)+(1/3)logbase3(square root of x) please show the steps to solving this. thanx. remember that 1 log (AxB) = log A + Log B (same base) 2 log (A/B) = log A  log B 3 log A^n = n log A use these … 
Algebra 2
how do not understand how to do this Log X + Lob (X3) = 1 I know I do this Log X(X3)=1 then I do this Log X^(2)  3X = 1 then I do this 2 Log (X3X) = 1 then 2 Log (2X) = 1 then (2 Log (2X) = 1)(1/2) Log (2X) = 1/2 then (Log (2X) … 
Mathematics
Prove that log a, log ar, log ar^2 is an a.p. Is the following below correct? 
Math Help Please
Which of the following expressions is equal to log (x sqrty)/z^5 A. log x + log (1/2) + log y– log 5 – log z B. log [x + (1/2)y – 5z] C. log x + (1/2)log y – 5 log z d. [(1/2) log x log y]/(5 log z) 
math(Please help)
1) use the properties of logarithms to simplify the logarithmic expression. log base 10 (9/300) log  log 300 log 9 = 2 log 3 log 300 = log 3 + log 100 = log 3+2 I just do not know how to put these together now! 
math
Logarithm!!! Select all of the following that are true statements: (a) log(2x) = log(2) + log(x) (b) log(3x) = 3 log(x) (c) log(12y) = 2 log(2) + log(3y) (d) log(5y) = log(20y) – log(4) (e) log(x) = log(5x) – log(5) (f) ln(25) … 
Trigonometry
This is a logs question If u=x/y^2, which expression is equivalent to log u? 
Math/trig
Log radical b/ a^2 is equivalent to 1) 1/2 log b + 1/2 log a 2) l/2 log b 2 log a 3) 2 log b  1/2 log a 4) 1/2logb/2 log a 
college algebra
Write expression as one logarithm and simplify if appropriate. log 3√x + log x^4  log x^3 4 log (x+3)  5 log (x^2+4) + 1/3 log y I have these who problems but I don't know where to start. HELP Please. 
Precaculculus
Suppose you are told that log(2)=0.3562 and log(3)=0.5646. All of them with the base of 'a'. Find: i) log(6) ii) log(9) Solutions i) log(6)= log (3)(2) = log 3 + log 2 = 0.5646 + 0.3562 = 0.9208 ii)log(9)= log 3^2 = 2 log 3 = 2 (0.5646) …