If A + B + C = 180°, Prove that

Cos²A + Cos²B + Cos²C = 1-2cosAcosBcosC

2cosAcosBcosC =(2cosAcosB)cosC

=(cos(A+B) + cos(A-B))cosC
=cos(pi-C)cosC + cos(A-B)cos(pi-(A+B))
=-2cos^2C - 2cos(A+B)cos(A-B)
=-cos^2C - cos^2A + sin^2B

so,

1 - 2cosAcosBcosC = 1 + cos^2C + cos^2A - sin^2B
= 1 - sin^2B + cos^2C + cos^2A
= cos^2B + cos^2C + cos^2A

To prove that cos²A + cos²B + cos²C = 1 - 2cosAcosBcosC, we will start by using the trigonometric identity that states:

cos²θ + sin²θ = 1

For any angle θ.

Now, let's look at the left side of the equation:

cos²A + cos²B + cos²C

Using the trigonometric identity, we can rewrite this as:

1 - sin²A + 1 - sin²B + 1 - sin²C

Now, rearrange the terms:

(1 + 1 + 1) - (sin²A + sin²B + sin²C)

Since sin²θ = 1 - cos²θ, we can substitute this in:

3 - (1 - cos²A + 1 - cos²B + 1 - cos²C)

Simplify:

3 - (3 - cos²A - cos²B - cos²C)

Combine the terms:

3 - 3 + cos²A + cos²B + cos²C

Which simplifies to:

cos²A + cos²B + cos²C

Thus, we can conclude that cos²A + cos²B + cos²C is equal to 1 - 2cosAcosBcosC.

To prove the equation Cos²A + Cos²B + Cos²C = 1-2cosAcosBcosC, we can start by using the identity relating the square of the cosine of an angle to its double angle formula:

Cos²θ = (1 + Cos2θ)/2

Now, let's use this identity to rewrite each term in the equation:

Cos²A = (1 + Cos2A)/2
Cos²B = (1 + Cos2B)/2
Cos²C = (1 + Cos2C)/2

Substituting these formulas into the equation, we have:

(1 + Cos2A)/2 + (1 + Cos2B)/2 + (1 + Cos2C)/2 = 1 − 2cosAcosBcosC

Next, let's simplify the left side of the equation by combining like terms:

(1 + (Cos2A + Cos2B + Cos2C))/2 = 1 − 2cosAcosBcosC

Now, let's focus on the term inside the parentheses. According to the angle sum property, we know that:

Cos2A + Cos2B + Cos2C = -1 - 2cos(A+B)cosC

Since A + B + C = 180°, we have:

(A + B) = 180° - C

Substituting this into the equation:

Cos2A + Cos2B + Cos2C = -1 - 2cos(180° - C)cosC

Applying the cosine difference formula:

Cos(180° - C) = -CosC

Cos2A + Cos2B + Cos2C = -1 - 2(-CosC)cosC

Simplifying further:

Cos2A + Cos2B + Cos2C = -1 + 2cosC²

Now, we can substitute this back into our equation:

(1 + (-1 + 2cosC²))/2 = 1 − 2cosAcosBcosC

Simplifying:

(1 - 1 + 2cosC²)/2 = 1 − 2cosAcosBcosC

(cosC²)/2 = 1 − 2cosAcosBcosC

Now, let's simplify the left side of the equation:

[(1 + cosC)(1 - cosC)]/2 = 1 − 2cosAcosBcosC

(1 - cos²C)/2 = 1 − 2cosAcosBcosC

Using the identity sin²θ = 1 - cos²θ:

(sin²C)/2 = 1 − 2cosAcosBcosC

Since sin²θ = 1 - cos²θ:

Sin²C = 2 - 4cosAcosBcosC

Finally, multiplying both sides of the equation by 2:

2sin²C = 2 - 4cosAcosBcosC

2(1 - cos²C) = 2 - 4cosAcosBcosC

2 - 2cos²C = 2 - 4cosAcosBcosC

Simplifying both sides yields:

2cos²C = 4cosAcosBcosC

Finally, dividing both sides by 2:

cos²C = 2cosAcosBcosC

This proves that Cos²A + Cos²B + Cos²C = 1 - 2cosAcosBcosC.

Much samaj mai nhi aaya