College Calculus

posted by .

Find the volume of the solid with given base and cross sections. The base is the unit circle x^2+y^2=1 and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    The base of a solid is a circle of radius = 4 Find the exact volume of this solid if the cross sections perpendicular to a given axis are equilateral right triangles. The equation of the circle is: x^2 + y^2 = 16 I have the area of …
  2. calc

    What is the volume of the solid with given base and cross sections?
  3. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  4. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  5. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  6. calculus

    #3 A solid has a base in the form of the ellipse: x^2/25 + y^2/16 = 1. Find the volume if every cross section perpendicular to the x-axis is an isosceles triangle whose altitude is 6 inches. #4 Use the same base and cross sections …
  7. Calculus

    Let R be the region enclosed by the graphs y=e^x, y=x^3, and the y axis. A.) find R B.) find the volume of the solid with base on region R and cross section perpendicular to the x axis. The cross sections are triangles with height …
  8. Calculus

    Find the volume of the solid whose base is the circle x^2+y^2=25 and the cross sections perpendicular to the x-axis are triangles whose height and base are equal. Find the area of the vertical cross section A at the level x=1.
  9. Calculus

    Let f and g be the functions given by f(x)=1+sin(2x) and g(x)=e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. A. The region R is the base of a solid. For this solid, the cross sections, …
  10. Calculus

    Find the volume of the solid whose base is the circle x^2+y^2=64 and the cross sections perpendicular to the x-axis are triangles whose height and base are equal. Find the area of the vertical cross section A at the level x=7.

More Similar Questions