Math
posted by Lea .
Verify if this is the correct form please.
Given the parent function f(x)=log[10]x, state the equation of the function that results from a vertical stretch by a factor of 2/5, a horizontal stretch by a factor of 3/4, a reflection in the yaxis, a horizontal translation 2 units to the right, and a vertical translation 3 units down.
f(x)=alog[10](k(xd))+c
=2/5log[10](3/4(x2))3
Respond to this Question
Similar Questions

algebra 2
What are two different transformations that will transform f(x)=5x+3 into g(x)=15x12? 
Math
Can someone please help me with this question. Thank you! State the image of the given point after the following transformation: (2,7) after a vertical stretch by a factor of 1/2 about the line y=1 followed by a horizontal stretch … 
Math
Hi, I asked this question yesterday and I am still struggling with it, can someone please help me, thank you! State the image of the given point after the following transformation: (2,7) after a vertical stretch by a factor of 1/2 … 
Precalculus
Can someone help me with this question? I got the transformation for horizontal shift and vertical shift, however, I don't know how to find the vertical/horizontal compression/stretch. 1. Describe the transformations that were applied 
Precalculus
Verify these answers please. 1. Which of the following functions would f(x) = log(base 10)x horizontally 4 units to the left? 
Precalculus
Given the parent function f(x)log(base10)x, state the equation of the function that results from a vertical stretch by a factor of 2/5, a horizontal stretch by a factor of 3/4, a reflection in the yaxis , a horizontal translation … 
Precalculus
Given the parent function f(x)log(base10)x, state the equation of the function that results from a vertical stretch by a factor of 2/5, a horizontal stretch by a factor of 3/4, a reflection in the yaxis , a horizontal translation … 
College Algebra
1. Which of the following best describes how the graph of f can be obtained from the graph of y = 1/x^2? 
college algebra, Please help!!
which of the following best describes how the graph of f can be obtained from the graph of y=1/x^2? 
Math  Transformations
State the transformation for g(x) = 2 (2x  4)³  1 Would it be a vertical stretch by a factor of 2 a reflection in the xaxis a horizontal stretch by a factor of 1/2 a translation 4 units right and 1 unit down Am i right?