Calculus
posted by Becca .
Find the volume of the solid whose base is the region bounded by y=x^2 and the line y=0 and whose cross sections perpendicular to the base and parallel to the xaxis are semicircles.
Respond to this Question
Similar Questions

calculus
the base of a solid is a region in the first quadrant bounded by the xaxis, the yaxis, and the line y=1x. if cross sections of the solid perpendicular to the xaxis are semicircles, what is the volume of the solid? 
Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
calculus
Find the volume of the solid whose base is the region bounded between the curve y=sec x and the xaxis from x=pi/4 to x=pi/3 and whose cross sections taken perpendicular to the xaxis are squares. 
calculus
the region bounded by the quarter circle (x^2) + (y^2) =1. Find the volume of the following solid. The solid whose base is the region and whose crosssections perpendicular to the xaxis are squares. 
Calculus
The functions f and g are given by f(x)=√x and g(x)=6x. Let R be the region bounded by the xaxis and the graphs of f and g, as shown in the figure in the link below. Please show your work. h t t p://goo.gl/jXIZD 1. Find the … 
Calculus
Let M be the region under the graph of f(x) = 3/e^x from x=0 to x=5. A. Find the area of M. B. Find the value of c so that the line x=c divides the region M into two pieces with equal area. C. M is the base of a solid whose cross sections … 
Calculus
The base of a solid is the region bounded by the lines y = 5x, y = 10, and x = 0. Answer the following. a) Find the volume if the solid has cross sections perpendicular to the yaxis that are semicircles. b) Find the volume if the … 
calculus
Find the volume of a solid whose base is bounded by the parabola x=y^2 and the line x=9, having square crosssections when sliced perpendicular to the xaxis.