algebra
posted by Anonymous .
The halflife of 234U, uranium234, is 2.52 105 yr. If 97.7% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed?

.5 = e^2.52*10^5 k
ln .5 = 2.52 * 10^5 k
k =2.75*10^6
ln .977 = 2.75*10^6 t
t = 8460 years
= 8,000 years 
.977=1e^(.693t/thalf)
take lne of each side.
ln.977=.692t/th
t= thalf*ln.977/.693
Respond to this Question
Similar Questions

algebra
The halflife of 234U, uranium234, is 2.52 105 yr. If 97.7% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed 
algebra
The halflife of 234U, uranium234, is 2.52 105 yr. If 97.7% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
algebra
The halflife of 234U, uranium234, is 2.52 multiplied by 105 yr. If 98.8% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
algebra
The halflife of 234U, uranium234, is 2.52 multiplied by 105 yr. If 98.8% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
algebra
The halflife of 234U, uranium234, is 2.52 multiplied by 105 yr. If 98.6% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
math
The halflife of 234U, uranium234, is 2.52 105 yr. If 97.4% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
algebra
The halflife of 234U, uranium234, is 2.52 105 yr. If 98.4% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
math
The halflife of 234U, uranium234, is 2.52 105 yr. If 98.3% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
pre algebra
The halflife of 234U, uranium234, is 2.52 105 yr. If 98.6% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed? 
ALGEBRA
The halflife of 234U, uranium234, is 2.52 multiplied by 105 yr. If 98.3% of the uranium in the original sample is present, what length of time (to the nearest thousand years) has elapsed?