# Math

posted by .

Solve (sinx-1)(cosx -1/2) = 0 where 0≤x<2pi

a) pi/3, pi/2, 5pi/3
b) pi/6, 5pi/6, pi
c) pi/3, pi, 5pi/3
d) pi/6, pi/2, 5pi/6

• Math -

sin x = 1 when x = pi/2

cos x = 1/2 when x = pi/3 and -pi/3 which is 6 pi/3 - pi/3 = 5 pi/3

so
pi/3 , pi/2 , 5 pi/3 a)

and for heavens sake remember that
sin^2 x + cos^2 x = 1 !!!!

## Similar Questions

1. ### PreCalculus

Hi I need some assistance on this problem find the exact value do not use a calculator cot[(-5pi)/12] Here is my attempt RT = square root pi = 3.14... cot[(-5pi)/12]={tan[(-5pi)/12]}^-1={tan[(2pi)/12-(8pi)/12]}^-1={tan[pi/6-(2pi)/3]}^-1={(tan[pi/6]-tan[(2pi)/3])/(1+tan[pi/6]tan[(2pi)/3])}^-1={((RT[3])/3+RT[3])/(1+((RT[3])/3)(-RT3))}^-1 …

Approximate the equation's solutions in the interval (0,2pi) sin2x sinx = cosx 2cos(x) (1/2-sin^2x) = 0 Then I got 3pi/2, pi/2, pi/6 and 5pi/6 Then I substituted 0-3 and got 3pi/2 , 5pi/2 , 9pi/2 , pi/2, pi/6, 7pi/6, 13pi/6 , 19pi/6 …
3. ### trig

using the fact that 5pi/8=1/2(5pi/8) and the half angle identity for cos to find the exact (in terms of radicals) value of cos(5pi/8)
4. ### Alg. II

Solve y=Arcsin 1/2 A.) -5pi/6 B.) 5pi/6 C.) -pi/6 D.) pi/6
5. ### Calculus

Find the area in the first quadrant bounded by the arc of the circle described by the polar equation r = (2 sin theta)+(4 cos theta) A. 5pi/2 B. (5pi/2)+4 C. 5pi D. 5pi + 8
6. ### Trig

can you please simplify these in faction form?
7. ### Calculus

Find the area under one arch of a cycloid describe by the parametric equations x=3(2Theta - sin 2Theta) and y= 3(1-cos2Theta). Use 0 and pi for the limiting values of Theta. A. 9Pi B. 18Pi C. 27Pi D. 36Pi Find the area in the first …
8. ### Math

Which angles are coterminal with pi/6? Chose all answers that are correct. A. 5pi/6 B.13pi/6 C.-5pi/6 D.-11pi/6 I think its A and C
9. ### precalculus

Is this right? Convert the polar coordinate (-14, 5pi/3) to rectangular form. Does it mean rectangular coordinates and if so can you check my work?
10. ### Algebra 2

What values for theta(0 <= theta <= 2pi) satisfy the equation?

More Similar Questions