Precalculus

posted by .

Write the three cube roots of 8 cis (-30°).

  • Precalculus -

    2 e^i(-30/3) = 2 cis -10
    2 e^i(-30/3 +360/3)= 2 cis 110
    2 e^i(-30/3 -360/3) = 2 cis -130

  • Precalculus -

    This is probably silly, but where is the 2 in the beginning of all of those from?

  • Precalculus -

    2*2*2 = 8

  • Precalculus -

    Ohmygoodness. Hhaha. Thanks!

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Roots Ok, what about roots? Roots of polynomials?
  2. equation complex number

    z^4 + 81 = 0 (solve) change it to polar, then take the root. z^4= 81@180 z= 3@180/4 + n90 where n=0, 1, 2, 3 check: z= 3@180/4 + 3*90=3@315 z^4=81@(4*315)=81@1260= 91@180=-81 you can check it at the other roots also. this is what i …
  3. maths

    If 5x4-14x³+18x²+40x+16=(x²-4x+8)(ax²+bc+c) find a,b and c and hence find the four solutions of the equation 5x4-14x³+18x²+40x+16 Given that x³-1=(x-&)(ax²+bx+c) find the values of a,b and c and hence find the three roots of …
  4. Precalculus

    "Show that x^6 - 7x^3 - 8 = 0 has a quadratic form. Then find the two real roots and the four imaginary roots of this equation." I used synthetic division to get the real roots 2 and -1, but I can't figure out how to get the imaginary …
  5. precalc

    express the roots of unity in standard form a+bi. 1.) cube roots of unity 2.) fourth roots of unity 3.) sixth roots of unity 4.) square roots of unity
  6. precalculus

    express the roots of unity in standard form a+bi. 1.) cube roots of unity 2.) fourth roots of unity 3.) sixth roots of unity 4.) square roots of unity
  7. PRECALCULUS

    find the cube roots of the complex number. 27((cos(11pi/6)) + i(sin(11pi/6))
  8. PRECALCULUS

    1.) determine two pairs of polar coordinates for the point (-4sqrt3, 4sqrt3)with 0degrees less than or equal to theta less than or equal to 360degrees 2.) Use DeMoivre's Theorem to find (1-i)^10. write your answer in the form a+bi. …
  9. Precalculus

    The roots of \[z^7 = -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\]are $\text{cis } \theta_1$, $\text{cis } \theta_2$, $\dots$, $\text{cis } \theta_7$, where $0^\circ \le \theta_k < 360^\circ$ for all $1 \le k \le 7$. Find $\theta_1 …
  10. Precalculus

    The roots of \[z^7 = -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\]are $\text{cis } \theta_1$, $\text{cis } \theta_2$, $\dots$, $\text{cis } \theta_7$, where $0^\circ \le \theta_k < 360^\circ$ for all $1 \le k \le 7$. Find $\theta_1 …

More Similar Questions