Respond to this Question
Similar Questions

Math
Roots Ok, what about roots? Roots of polynomials? 
equation complex number
z^4 + 81 = 0 (solve) change it to polar, then take the root. z^4= 81@180 z= 3@180/4 + n90 where n=0, 1, 2, 3 check: z= 3@180/4 + 3*90=3@315 z^4=81@(4*315)=81@1260= 91@180=81 you can check it at the other roots also. this is what i … 
maths
If 5x414x³+18x²+40x+16=(x²4x+8)(ax²+bc+c) find a,b and c and hence find the four solutions of the equation 5x414x³+18x²+40x+16 Given that x³1=(x&)(ax²+bx+c) find the values of a,b and c and hence find the three roots of … 
Precalculus
"Show that x^6  7x^3  8 = 0 has a quadratic form. Then find the two real roots and the four imaginary roots of this equation." I used synthetic division to get the real roots 2 and 1, but I can't figure out how to get the imaginary … 
precalc
express the roots of unity in standard form a+bi. 1.) cube roots of unity 2.) fourth roots of unity 3.) sixth roots of unity 4.) square roots of unity 
precalculus
express the roots of unity in standard form a+bi. 1.) cube roots of unity 2.) fourth roots of unity 3.) sixth roots of unity 4.) square roots of unity 
PRECALCULUS
find the cube roots of the complex number. 27((cos(11pi/6)) + i(sin(11pi/6)) 
PRECALCULUS
1.) determine two pairs of polar coordinates for the point (4sqrt3, 4sqrt3)with 0degrees less than or equal to theta less than or equal to 360degrees 2.) Use DeMoivre's Theorem to find (1i)^10. write your answer in the form a+bi. … 
Precalculus
The roots of \[z^7 = \frac{1}{\sqrt{2}}  \frac{i}{\sqrt{2}}\]are $\text{cis } \theta_1$, $\text{cis } \theta_2$, $\dots$, $\text{cis } \theta_7$, where $0^\circ \le \theta_k < 360^\circ$ for all $1 \le k \le 7$. Find $\theta_1 … 
Precalculus
The roots of \[z^7 = \frac{1}{\sqrt{2}}  \frac{i}{\sqrt{2}}\]are $\text{cis } \theta_1$, $\text{cis } \theta_2$, $\dots$, $\text{cis } \theta_7$, where $0^\circ \le \theta_k < 360^\circ$ for all $1 \le k \le 7$. Find $\theta_1 …