Prove that

cos(A+B)cosC - cos(B+C)cosA = sinBsin(C-A)

LS

= (cosAcosB - sinAsinB)cosC - (cosBcosC- sinBsinC)(cosA)
= cosAcosBcosC - sinAsinBcosC - cosAcosBcosC + cosAsinBsinC
= cosAsinBsinC - sinAsinBcosc

RS = sinB(sinCcosA - cosCsinA)
= cosAsinBsinC -sinAsinBcosC
= LS

To prove the given trigonometric identity:

cos(A+B)cosC - cos(B+C)cosA = sinBsin(C-A),

we need to manipulate the terms using trigonometric identities until we obtain an equation that is true for all values of A, B, and C.

Let's start by expanding the left-hand side of the equation:

cos(A+B)cosC - cos(B+C)cosA

We can use the identity cos(A+B) = cosAcosB - sinAsinB:

=(cosAcosB - sinAsinB)cosC - cos(B+C)cosA

Next, we can use the identity cos(B+C) = cosBcosC - sinBsinC:

=(cosAcosB - sinAsinB)cosC - (cosBcosC - sinBsinC)cosA

Now, we can distribute the terms:

=cosAcosBcosC - sinAsinBcosC - cosBcosCcosA + sinBsinCcosA

Next, let's rearrange the terms:

=cosAcosBcosC - cosBcosCcosA - sinAsinBcosC + sinBsinCcosA

Now, notice that the terms cosAcosBcosC and cosBcosCcosA can be rearranged:

= cosAcosBcosC - cosAcosBcosC - sinAsinBcosC + sinBsinCcosA

The terms cosAcosBcosC and -cosAcosBcosC cancel each other, leaving us with:

= - sinAsinBcosC + sinBsinCcosA

Now, let's take a closer look at the terms sinAsinBcosC and sinBsinCcosA. Notice that they are similar in form, but the angles are different. We can rearrange sinAsinBcosC as sinBsinCcosA by changing the signs and interchanging the angles:

= - sinBsinCcosA + sinBsinCcosA

Finally, the two terms cancel each other out, leaving us with:

= 0

Therefore, we have proved that:

cos(A+B)cosC - cos(B+C)cosA = sinBsin(C-A)

To prove the given statement, we will start by expanding the left-hand side (LHS) of the equation:

LHS = cos(A + B)cosC - cos(B + C)cosA

Using the trigonometric identity for the cosine of the sum of angles:

cos(A + B) = cosAcosB - sinAsinB

cos(B + C) = cosBcosC - sinBsinC

Now, substituting these expressions into the LHS of the equation, we have:

LHS = (cosAcosB - sinAsinB)cosC - (cosBcosC - sinBsinC)cosA

Expanding the expression further, we get:

LHS = cosAcosBcosC - sinAsinBcosC - cosBcosCcosA + sinBsinCcosA

Now, let's rearrange the terms:

LHS = cosAcosBcosC - cosBcosCcosA - sinAsinBcosC + sinBsinCcosA

Using the commutative property of multiplication, we can group the terms with cosA and sinA together, as well as the terms with cosB and sinB:

LHS = (cosAcosBcosC - cosBcosCcosA) + (- sinAsinBcosC + sinBsinCcosA)

Next, we will factor out cosC from the first group, and sinC from the second group:

LHS = cosC(cosAcosB - cosBcosA) + sinC(-sinAcosB + sinBcosA)

Since cosAcosB - cosBcosA = 0 (using the identity for the cosine of the difference of angles), we have:

LHS = cosC * 0 + sinC(-sinAcosB + sinBcosA)

Simplifying further, we get:

LHS = sinC(-sinAcosB + sinBcosA)

Finally, using the trigonometric identity for the sine of the difference of angles:

-sinAcosB + sinBcosA = -sin(B - A)

Therefore, we have:

LHS = sinC(-sinAcosB + sinBcosA) = sinC(-sin(B - A)) = -sin(B - A)sinC

Since -sin(B - A)sinC = sinBsin(C - A), the LHS of the equation is equal to the right-hand side (RHS) of the equation, completing the proof.