Math
posted by Allessandra .
Differentiate
(1 sinx) / (1 +sinx)
How would I do this?
The answer is (2cosx)/ (1 + sinx)^2
Thanks in advance :)!!

d/dx (1sinx)/(1+sinx)
[cosx (1+sinx)  (1sinx)(cosx)]/(1+sinx)^2
(cosx  sinx cosx  cosx + sinx cosx)/(1+sinx)^2
= 2cosx/(1+sinx)^2
Respond to this Question
Similar Questions

Trig
prove the identity (sinX)^6 +(cosX)^6= 1  3(sinX)^2 (cosX)^2 sinX^6= sinx^2 ^3 = (1cosX^2)^3 = (12CosX^2 + cos^4) (1cosX^2) then multiply that out 12CosX^2 + cos^4  cosX^2 + 2cos^4 cos^6 add that on the left to the cos^6, and … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
check math
Here are my answers. Can you check if I got the right answers? 
math
the problem is 2cos^2x + sinx1=0 the directions are to "use an identity to solve each equation on the interval [0,2pi). This is what i've done so far: 2cos^2x+sinx1=0 2cos^2x1+sinx=0 cos2x + sinx =0 1  2sin^2x + sinx = 0 2sin^2x+sinx1=0 … 
math
tanx+secx=2cosx (sinx/cosx)+ (1/cosx)=2cosx (sinx+1)/cosx =2cosx multiplying both sides by cosx sinx + 1 =2cos^2x sinx+1 = 2(1sin^2x) 2sin^2x + sinx1=0 (2sinx+1)(sinx1)=0 x=30 x=270 but if i plug 270 back into the original equation … 
math
solve each equation for 0=/<x=/<2pi sin^2x + 5sinx + 6 = 0? 
Trig Help
Prove the following: [1+sinx]/[1+cscx]=tanx/secx =[1+sinx]/[1+1/sinx] =[1+sinx]/[(sinx+1)/sinx] =[1+sinx]*[sinx/(sinx+1)] =[sinx+sin^2x]/[sinx+1] =[sinx+(1cos^2x)]/[sinx+1] =? 
trigonometry
can i use factoring to simplify this trig identity? 
Math Help
Hello! Can someone please check and see if I did this right? 
Trigonometry
How do you simplify: (1/(sin^2xcos^2x))(2/cosxsinx)?