mathematics

posted by .

Find all the solutions of 2 sinx=1-cosx in the interval from 0° ≤x<360°

  • mathematics -

    4 sin^2 = 1 - 2cos + cos^2
    4 - 4 cos^2 = 1 - 2cos + cos^2
    5cos^2 - 2cos - 3 = 0

    cosx = 1 or -.6

    x = 0 or 126.86°

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Pre-Calc

    Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
  2. Maths

    Solve this equation fo rx in the interval 0<=x<=360 3sinxtanx=8 I would do it this way: sinxtanx = 8/3 sinx(sinx/cosx)=8/3 sin^2x/cosx = 8/3 (1-cos^2x)/cosx=8/3 cross-multiply 3 - 3cos^2x = 8cosx 3cos^2x + 8cosx - 3 = 0 (3cosx-1)(cosx+3)=0 …
  3. Trigonometry.

    ( tanx/1-cotx )+ (cotx/1-tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side …
  4. Trig........

    I need to prove that the following is true. Thanks (cosx / 1-sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1-sinx) multiply top and …
  5. maths

    hey, i would really appreciate some help solving for x when: sin2x=cosx Use the identity sin 2A = 2sinAcosA so: sin 2x = cos x 2sinxcosx - cosx = 0 cosx(2sinx - 1)=0 cosx = 0 or 2sinx=1, yielding sinx=1/2 from cosx=0 and by looking …
  6. Mathematics - Trigonometric Identities

    Prove: (tanx)(sinx) / (tanx) + (sinx) = (tanx) - (sinx) / (tanx)(sinx) What I have so far: L.S. = (sinx / cosx) sinx / (sinx / cosx) + sinx = (sin^2x / cosx) / (sinx + (sinx) (cosx) / cosx) = (sin^2x / cosx) / (cosx / sinx + sinxcosx)
  7. Pre calc

    Find solutions on interval 0,2pie (cosx/1+sinx) + (1+sinx/cosx) = -4
  8. trig

    Find all the solutions of 2 sinx=1-cosx in the interval from 0° ≤x<360°
  9. Trigonometry Check

    Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
  10. Precalculus

    Please help!!!!!!!!!!! Find all solutions to the equation in the interval [0,2π). 8. cos2x=cosx 10. 2cos^2x+cosx=cos2x Solve algebraically for exact solutions in the interval [0,2π). Use your grapher only to support your …

More Similar Questions