Physics

posted by .

Vibrations from a 650 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 410 m/s. The standing wave has four loops and an amplitude of 4.0 mm.

  • Physics -

    Incomplete.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    I don't know how to answer this questin i guess I don't understand the definition A streteched sgtring fized at both ends is 2.0 m long. What are three wavelengths that will poduce standing waves on the string?
  2. Physics

    A string has a linear density of 6.7 x 10-3 kg/m and is under a tension of 210 N. The string is 1.6 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  3. Physics

    A string has a linear density of 6.7 x 10-3 kg/m and is under a tension of 210 N. The string is 1.6 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  4. physics. HELP PLEASE

    A string has a linear density of 5.3 x 10-3 kg/m and is under a tension of 370 N. The string is 1.8 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  5. Physics

    To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end of the string passes over a pulley and is connected to a suspended mass M, as shown. The value of M is such that the …
  6. Physics

    To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end of the string passes over a pulley and is connected to a suspended mass M, as shown. The value of M is such that the …
  7. physics

    A string has a linear density of 8.1 x 10-3 kg/m and is under a tension of 200 N. The string is 2.9 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  8. Physics

    A string has a linear density of 6.2 x 10-3 kg/m and is under a tension of 250 N. The string is 1.2 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  9. Physics

    A string has a linear density of 6.2 x 10-3 kg/m and is under a tension of 250 N. The string is 1.2 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the (a) speed, (b) wavelength, …
  10. Physics

    A string of length 2.7 m is fixed at both ends. When the string vibrates at a frequency of 90.0 Hz, a standing wave with 5 loops is formed. What is the wavelength of the waves that travel on the string?

More Similar Questions