calculus

posted by .

Find the volume V of the described solid S.
The base of S is an elliptical region with boundary curve 9x2 + 25y2 = 225. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

  • calculus -

    60

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  2. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  3. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  4. math

    Can someone please explain this problem to me: I have to use integrals to find volumes with known cross sections but i just don't understand. Thanks! Consider a solid bounded by y=2ln(x) and y=0.9((x-1)^3). If cross sections taken …
  5. math

    Can someone please explain this problem to me: I have to use integrals to find volumes with known cross sections but i just don't understand. Thanks! Consider a solid bounded by y=2ln(x) and y=0.9((x-1)^3). If cross sections taken …
  6. calculus

    Find the volume of the solid S that satisfies the two following conditions. First, the base of S is the elliptical region with boundary curve 9 x2 + 4 y2 = 36, and second, the cross-sections of S perpendicular to the x-axis are isosceles …
  7. Calculus BC

    Let the region bounded by x^2 + y^2 = 9 be the base of a solid. Find the volume if cross sections taken perpendicular to the base are isosceles right triangles. (a) 30 (b) 32 (c) 34 (d) 36 (e) 38
  8. calc

    the base of s is a elliptical region with boudary cuvrve 16x^2 +16y^2 =4. cross sections perpandicular to the x axis are isosceles right triangles with hypotenuse in the base. find the volume of s
  9. CALCULUS 2

    Use calculus to find the volume of the following solid S: The base of S is an elliptical region with boundary curve 9x^2+4y^2=36. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.
  10. Calculus

    Let f and g be the functions given by f(x)=1+sin(2x) and g(x)=e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. A. The region R is the base of a solid. For this solid, the cross sections, …

More Similar Questions