# Calculus

posted by .

What is the limit as t→∞ of L(t)?

L(t) = 34 - 32e^(-0.0719t)

Thank you so much!

• Calculus -

As t->∞ you have

L(t) = 34 - 32e-∞
= 34 - 32*0 = 34

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### maths

A sequence is defined by un = 2×(−0.5)n + 3 (n = 1,2,3, . . .). Choose the option that best describes the long-term behaviour of the sequence. Options A un becomes arbitrarily small (that is, un → 0 as n→∞). …
2. ### maths

A sequence is defined by un = 2×(−0.5)n + 3 (n = 1,2,3, . . .). Choose the option that best describes the long-term behaviour of the sequence. Options A un becomes arbitrarily small (that is, un → 0 as n→∞). …
3. ### Math(scientific notation)

1)9.32E-7 + 1.32E+4 = 2)1.32E+4 + 1.04E+5/6.47E+4= 3) 9.93E+6/(9.32E-7)(1.32E+4)= I keep getting a different answer from the answer my teacher provided.
4. ### L'Hopitals Rule

5) Use the L’Hopital’s method to evaluate the following limits. In each case, indicate what type of limit it is ( 0/0, ∞/∞, or 0∙∞) lim x→2 sin(x^2−4)/(x−2) = lim x→+∞ ln(x−3)/(x−5) …
5. ### calculus

Evaluate these limits. (Enter answer as a decimal. Enter INF if the limit is +∞; -INF if the limit is −∞; and DNE if the limit is neither ±∞ and does not exist.) (a) limx→04+x−−−−−√−2x= …
6. ### calcc

Note that f is continuous on (−∞, 6) and (6, ∞). For the function to be continuous on (−∞, ∞), we need to ensure that as x approaches 6, the left and right limits match. First we find the left limit. …
7. ### calc urgent

Note that f is continuous on (−∞, 6) and (6, ∞). For the function to be continuous on (−∞, ∞), we need to ensure that as x approaches 6, the left and right limits match. First we find the left limit. …
8. ### Math

Find the limit if it exists. lim 1/(x-2) x→2+ lim 1/(x-2) x→2- lim 1/(x-2) x→2 lim (3x+2) x→∞ lim 999/(x^3) x→-∞
9. ### Math

Find the limit if it exists. lim 1/(x-2) x→2+ lim 1/(x-2) x→2- lim 1/(x-2) x→2 lim (3x+2) x→∞ lim 999/(x^3) x→-∞
10. ### Math

Find the limit if it exists. lim 1/(x-2) = infinity x→2+ lim 1/(x-2) = negative infinity x→2- lim 1/(x-2) = Does not exist x→2 lim (3x+2) = infinity x→∞ lim 999/(x^3) = 0 x→-∞ Can someone check …

More Similar Questions