# Calculus

posted by .

F(x) = cos(x) • the integral from 2 to x² + 1 of
e^(u² +5)du

Find F'(x).

When i did this, i got:
-2xsin(x)e^((x²+1)² + 5)

But my teacher got:
-sin(x) • the integral from x² + 1 of e^(u² +5)du + 2xcos(x)e^((x²+1)² + 5)

Do you know why the integral is in his answer? I'm not sure where I went wrong. If you could help, I would greatly appreciate it. Thanks!!

• Calculus -

Leibnitz's Rule explains how to take the derivative of an integral. Take a google for it, or consult your textbook.

Basically, you have a product here. cos(x) * Integral f(x)

d/dx of the product is

-sin(x) * Integral + cos(x) * d/dx(Integral(f))

d/dx(Integral) = Integral(df/dx) = f, evaluated at the limits of integration.

## Similar Questions

1. ### Calculus

Hello Everyone, I need help with Calc II. 1. Integral from 0 to 1 of (sin(3*pi*t))dt For this one, I got -1/3pi cos (9 pi^2) + 1/3pi 2. indefinite integral of sinxcos(cosx)dx I got sin(cosx) + C 3. Indefinite integral of x over (root …
2. ### trig integration

s- integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1-cos (4x)] dx, but then i'm confused. The indefinite …
3. ### Integral

That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = -cos x du = cos x dx The integral is u v - integral of v du = -sinx cosx + integral of cos^2 dx which can be rewritten integral …
4. ### math

Generalize this to fine a formula for the integral: sin(ax)cos(bx)dx Could someone tell me what they got for an answer so I can check it to see if my answer is right. My answer: -1/2sinasinbx^2-1/3acosaxcosbx^3+ integral 1/3 a^2cosbx^3sinax..I'm …
5. ### Calculus

I have two questions, because I'm preparing for a math test on monday. 1. Use the fundamental theorem of calculus to find the derivative: (d/dt) the integral over [0, cos t] of (3/5-(u^2))du I have a feeling I will be able to find …

ok, i tried to do what you told me but i cant solve it for c because they cancel each others out! the integral for the first one i got is [sin(c)cos(x)-cos(c)sin(x)+sin(x)+c] and the integral for the 2nd one i got is [-sin(c)cos(x)+cos(c)sin(x)-sin(x)+c] …
7. ### calc

find integral using table of integrals ) integral sin^4xdx this the formula i used integral sin^n xdx =-1/n sin^n-1xcosx +n-1/n integral sin^n-2 using the formula this is what i got: integral sin^4xdx=-1/4sin^3xcosx+3/4 integral sin^2xdx= …
8. ### Calculus

Evaluate the integral. S= integral sign I= absolute value S ((cos x)/(2 + sin x))dx Not sure if I'm doing this right: u= 2 + sin x du= 0 + cos x dx = S du/u = ln IuI + C = ln I 2 + sin x I + C = ln (2 + sin x) + C Another problem: …
9. ### Integral Help

I need to find the integral of (sin x)/ cos^3 x I let u= cos x, then got -du= sin x (Is this right correct?
10. ### Integration by Parts

integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be -pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=-cos(t) i integral sin(t)e^(it)dt= -e^(it)cos(t)+i*integral cost(t)e^(it)dt …

More Similar Questions