Trig

posted by .

Find the exact value of tan 5pi/12 using the half-angle identity.

  • Trig -

    tan 5pi/6 = -1/√3

    tan x/2 = (1-cos(x))/sin(x)

    cos 5pi/6 = -√3/2
    sin 5pi/6 = 1/2

    tan 5pi/12 = (1 + √3/2)/(1/2)
    = 2 + √3

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. MATH

    1.)Find the exact solution algebriacally, if possible: (PLEASE SHOW ALL STEPS) sin 2x - sin x = 0 2.) GIVEN: sin u = 3/5, 0 < u < ï/2 Find the exact values of: sin 2u, cos 2u and tan 2u using the double-angle formulas. 3.)Use …
  2. PreCalculus

    Hi I need some assistance on this problem find the exact value do not use a calculator cot[(-5pi)/12] Here is my attempt RT = square root pi = 3.14... cot[(-5pi)/12]={tan[(-5pi)/12]}^-1={tan[(2pi)/12-(8pi)/12]}^-1={tan[pi/6-(2pi)/3]}^-1={(tan[pi/6]-tan[(2pi)/3])/(1+tan[pi/6]tan[(2pi)/3])}^-1={((RT[3])/3+RT[3])/(1+((RT[3])/3)(-RT3))}^-1 …
  3. trig

    using the fact that 5pi/8=1/2(5pi/8) and the half angle identity for cos to find the exact (in terms of radicals) value of cos(5pi/8)
  4. trig

    find the exact value by using the appropriate half-angle identity: sin(5pi/12)
  5. Trigonometry

    Find the exact value of tan(a-b) sin a = 4/5, -3pi/2<a<-pi; tan b = -sqrt2, pi/2<b<pi identity used is: tan(a-b)=(tan a-tan b)/1+tan a tan b simplify answer using radicals. (a is alpha, b is beta)
  6. Trigonometry

    use the appropriate trig identity (sum and difference, half angle, double angle) to find the exact value. 1)cos 255 degrees 2) sin 165 degrees 3) tan 285 degrees
  7. trig

    Find the exact value by using a half-angle identity. cos 22.5 degrees
  8. Precalculus/Trig 5

    Find the exact value of thet following trigonometric functions: tan(5pi/6) tan(7pi/6) tan(11pi/6)
  9. Trig

    Use a half-angle identity to find the exact value for sec(x/2) if sinx = -12/13 ; 3pi/2 < x < 2pi
  10. trig

    use a half-angle identity to find the exact value of tan 105 degrees.

More Similar Questions