Physics
posted by Dee .
Starting from rest, a 5.00 kg block slides 2.50 m down a rough 30.0 degree incline. The coefficient of kinetic friction between block and the incline is .436. Determine the work done by the friction force between block and incline and the work done on the normal force?

Wb = mg = 5kg * 9.8N/kg = 49N.
Fb = (49N,30deg.).
Fp = 49sin30 = 24.5N. = Force parallel to incline.
Fv = 49cos30 = 42.4N. = Force perpendicular to incline = The normal.
Ff = u*Fv = 0.436 * 42.4 = 18.50N. =
Force of friction.
1. Work=Ff * d = 18.50 * 2.5 = 46.3J.
2. d = h = 2.5 * sin30 = 1.25m.
Work = Fv * d = 42.4 * 1.25 = 53J.
Respond to this Question
Similar Questions

physics
Starting from rest, a 5.0 kg block slides 2.5 m down a rough 30.0 degrees incline in 2.0s. Determine (a) the work done by the force of gravity. (b) the mechanical energy lost due to friction, and (c) the work done by the normal force … 
physics
A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
physics
A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
physics
A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
Physics please help
Starting from rest, a 5.00 kg block slides 2.50 m down a rough 30.0 degree incline. The coefficient of kinetic friction between block and the incline is .436. Determine the work done by the friction force between block and incline … 
Physics
Starting from rest, a 5.00 kg block slides 2.50 m down a rough 30.0 degree incline. The coefficient of kinetic friction between block and the incline is .436. Determine the work done by the friction force between block and incline … 
Physics
A 3.00kg block starts from rest at the top of a 33.5° incline and slides 2.00 m down the incline in 1.30 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
physics
A 3.00kg block starts from rest at the top of a 27.5° incline and slides 2.00 m down the incline in 1.20 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
Physics
A 3.00kg block starts from rest at the top of a 25.5° incline and slides 2.00 m down the incline in 1.75 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. … 
physics
A 3.00kg block starts from rest at the top of a 31.0° incline and slides 2.00 m down the incline in 1.40 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …