# Calculus

posted by .

Explain how lim x->1 ((x^2)-1)/(sqrt(2x+2)-2) = 4

• Calculus -

Rationalize the denominator, that is, multiply top and bottom by √(2x+2) + 2 to give you

lim [(x^2 - 1)/(√(2x+2) - 2) ] * (√(2x+2) + 2)/(√(2x+2) + 2)
= (x+1)(x-1)(√(2x+2) + 2)/(2x+2 - 4)
= (x+1)(x-1)(√(2x+2) + 2)/( 2(x-1))

= lim (x+1)(√(2x+2) + 2)/2 as x --> 1
= 2(√4+2)/2 = 4

• Calculus -

=24

## Similar Questions

l = lim as x approaches 0 of x/(the square root of (1+x) - the square root of (1-x) decide whether: l=-1 or l=0 or l=1 Let me make sure I understand the question. Do we have lim x->0 x/[sqrt(1+x) - sqrt(1-x)] ?
2. ### calculus

A sequence{an} is given by a1=sqrt(2), an+1=sqrt(2*an). a) by induction or otherwise, show that {an} is increasing and bounded above by 3. Apply the Monotonic Sequence Theorem to show that lim n-->infinity an exists. b) Find lim …
3. ### Calculus

find lim f(x) - lim f(x) x->infinity x->-infinity if f(x)=ln (x+sqrt[x^2+a^2])/(x+sqrt[x^2+b^2]) a and b are real numbers
4. ### Calculus

show lim x->3 (sqrt(x)) = (sqrt(c)) hint: 0< |sqrt(x)-sqrt(c)|= (|x-c|)/(sqrt(x)+sqrt(c))<(1/(sqrt(c))*|x-c|
5. ### Calculus

show lim x->3 (sqrt(x)) = (sqrt(c)) hint: 0< |sqrt(x)-sqrt(c)|= (|x-c|)/(sqrt(x)+sqrt(c))<(1/(sqrt(c))*|x-c|
6. ### Math(calculus)

Evaluat d 4lowing1.lim x/|x| x-->0 2.lim x->1 sqrt(x^2+2- sqrt3)/x-1 3.lim n->~ f(n)=(1+1/n)^sqrtn 4. limx->0 f(x)= (12^x-3^x-4^x+1)/xtanx 5. Lim x->3 (x^n-3^n)^n/(n-3)^n
7. ### Calculus

Find the following limits algebraically or explain why they donâ€™t exist. lim x->0 sin5x/2x lim x->0 1-cosx/x lim x->7 |x-7|/x-7 lim x->7 (/x+2)-3/x-7 lim h->0 (2+h)^3-8/h lim t->0 1/t - 1/t^2+t
8. ### CALCULUS

Could someone please solve these four problems with explanations?
9. ### Check my CALCULUS work, please! :)

Question 1. lim h->0(sqrt 49+h-7)/h = 14 1/14*** 0 7 -1/7 Question 2. lim x->infinity(12+x-3x^2)/(x^2-4)= -3*** -2 0 2 3 Question 3. lim x->infinity (5x^3+x^7)/(e^x)= infinity*** 0 -1 3 Question 4. Given that: x 6.8 6.9 6.99 …
10. ### Probability

Let Sn be the number of successes in n independent Bernoulli trials, where the probability of success for each trial is 1/2 . Provide a numerical value, to a precision of 3 decimal places, for each of the following limits. 1. lim P …

More Similar Questions