# Calculus

posted by .

find f'(a) for f(x)=1/sqrt(13-7x)

i got my answer to be 7 / (7(13-7x)sqrt(13-7x))
but it says i am wrong

## Similar Questions

1. ### MATH

I need to simply this equation, but I got stuck. h/(4-sqrt(16+h)) = y First, I multiplied (4+sqrt(16+h)/(4+sqrt(16+h) to both sides, and I ended up with h(4+sqrt(16+h)/-h. Is this correct?
2. ### Math(Roots)

Could someone show me how to solve these problems step by step.... I am confused on how to fully break this down to simpliest terms sqrt 3 * sqrt 15= sqrt 6 * sqrt 8 = sqrt 20 * sqrt 5 = since both terms are sqrt , you can combine …
4. ### Calculus - Second Order Differential Equations

Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 y'(0)=4, …
5. ### Calculus - Second Order Differential Equations

Posted by COFFEE on Monday, July 9, 2007 at 9:10pm. download mp3 free instrumental remix Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 …
6. ### Calculus

Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 …
7. ### Math/Calculus

Solve the initial-value problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else?
8. ### Calculus

Evaluate the indefinite integral: 8x-x^2. I got this but I the homework system says its wrong:sqrt((-x-8)x)/(2*sqrt(x-8)*sqrt(x))*(((sqrt(x-8)*(x-4)*sqrt(x))-32*log(sqrt(x-8)+sqrt(x))
9. ### Calculus

Hi. In an integration solution, the integral of (1/(sqrt (8-u squared)) is written as arcsin(u/sqrt 8), but I don't see how they got it. When I did it I got (1/8)*(arcsin(u*sqrt8)). What I did was take sqrt8 common in the denominator …