posted by .

Consider the straight line: y=1x+3. Calculate the area UNDER this line which is bounded by y=0, x=8 and x=15. (That is, the area from the horizontal axis (y=0) to the line, between the values of x=8 and x=15.) Give you answer to the nearest whole number, rounding up

  • calculus -

    Using Calculus:
    Area = ∫(x+3) dx from 8 to 15
    = [x^2/2 + 3x] from 8 to 15
    = 225/2 + 45 - 64/2 - 24
    = 203/2 or 101.5

    of course we don't need Calculus to do this, since the shape is a simple trapezoid
    at x=8, height = 11
    at x = 15 , height = 18
    distance between = 15-8 = 7
    Area = (1/2)(11+18)(7) = 101.5

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calc.

    Find the area of the region bounded by the parabola y=x^2, the tangent line to this parabola at (1,1) and the x-axis. I don't really get what this question is asking. It looks like the area of right triangle to me...try the graph, …
  2. Calculus

    I am doing the AP calculus review, these are the questions I have no Idea on how to do: 1. if 0<= k <=pi/2 and the area under the curve y-cosx from x=k to x=pi/2 is 0.2, then k= 2. let F(x) be an antiderivative of (ln x)^4/x …
  3. calculus

    let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4. a) find the area of R b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of …
  4. calculus

    calculate the area bounded between the parabola y=x2, the straight line y=(x/2)+2, line x=1 and the y-axis.
  5. Calculus

    Let R be the region bounded by y = 1/x, the lime x = 1, the line x = 3 and the x-axis. The line x = k divides R into two regions of equal area. Determine k.
  6. Calculus

    This is another textbook number that doesn't have the solution and I can't figure it out. Any tips would be greatly appreciated. For each of the plane surfaces, calculate the exact surface area. (Answer in fractions) (a)The surface …
  7. Calculus

    Find the volume of the solid generated by revolving the region bounded by the line y=5x+6 and the parabola y=x^2 about the following lines: a) the line x=6 b) the line x=-1 c)the x axis d) the line y=36 Thanks!
  8. Calculus

    1. Find the area of the region bounded by the curves and lines y=e^x sin e^x, x=0, y=0, and the curve's first positive intersection with the x-axis. 2. The area under the curve of y=1/x from x=a to x=5 is approximately 0.916 where …
  9. Calculus

    Let f be the function given by f(x)=(x^3)/4 - (x^2)/3 - x/2 + 3cosx. Let R be the shaded region in the second quadrant bounded by the graph of f, and let S be the shaded region bounded by the graph of f and line l, the line tangent …
  10. brief calc

    Calculate the total area of the region described. Do not count area beneath the x-axis as negative.Bounded by the line y = 6x, the x-axis, and the lines x = 4 and x = 5

More Similar Questions