physics

posted by .

An extreme skier, starting from rest, coasts down a mountain slope that makes an angle 25.0° with the horizontal. The coefficient of kinetic friction between her skis and the snow is 0.200. She coasts for a distance of 13.8 m before coming to the edge of a cliff. Without slowing down, she skis off the cliff and lands downhill at a point whose vertical distance is 4.50 m below the edge. How fast is she going just before she lands?

  • physics -

    First calculate the potential energy decrease per unit mass,
    delta PE = g *(13.8 sin25 + 4.50)
    Subtract from that the work done against friction while on snow (per unit mass),
    g*cos25*0.20*13.8

    The result should be the kinetic energy per unit mass when she lands, which is V^2/2

    Use that to calculate the final speed, V

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    a 61 kg skier on level snow coasts 184 m to stop from a speed on 12.0 m/s. A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting …
  2. Physics

    A 61 kg skier on level snow coasts 184 m to stop from a speed of 12.0 m/s (A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting …
  3. physics

    an extreme skier starting from rest, coasts down a mountain that makes an angle 25.0¨¬with the horizontal. The coeffiecient of kinetic friction between her skis and the snow is 0.200. She coasts for a distance of 8.4m before coming …
  4. physics

    A skier with a mass of 70 kg starts from rest and skis down an icy (frictionless) slope that has a length of 52 m at an angle of 32° with respect to the horizontal. At the bottom of the slope, the path levels out and becomes horizontal, …
  5. Physics

    A 61.8 kg skier coasts up a snow-covered hill that makes an angle of 26.0° with the horizontal. The initial speed of the skier is 6.10 m/s. After coasting a distance of 1.86 m up the slope, the speed of the skier is 4.48 m/s. Calculate …
  6. Physics 1

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  7. physics

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  8. physics

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  9. Physics help!

    An extreme skier, starting from rest, coasts down a mountain that makes an angle of 26.7 ° with the horizontal. The coefficient of kinetic friction between her skis and the snow is 0.248. She coasts for a distance of 10.5 m before …
  10. Physics

    A skier with a mass of 66.6 kg starts from rest and skis down an icy (frictionless) slope that has a length of 58.4 m at an angle of 29.8° with respect to the horizontal. At the bottom of the slope, the path levels out and becomes …

More Similar Questions