# calculus

posted by .

Verify the identity

cot2 beta/1+csc beta=1-sin beta/sin beta.

• calculus -

did you mean
cot^2 ß/(1+cscß) = (1-sinß)/sinß ?

from the identity
sin^ Ø + cos^2 Ø = 1
if we divide each term by sin^2Ø ......
1 + cot^2 Ø = csc^2 Ø ----> cot^2 Ø = csc^2Ø - 1

LS
= (csc^2 ß - 1)/(1 + csc ß)
= (cscß + 1)(cscß - 1)/(1 + cscß)
= cscß - 1
= 1/sinß - sinß/sinß
= (1 - sinß)/sinß
= RS

## Similar Questions

1. ### math

How would you establish this identity: (1+sec(beta))/(sec(beta))=(sin^2(beta))/(1-cos(beta)) on the right, sin^2 = 1-cos^2, that factor to 1-cos * `1+cos, then the denominator makes the entire right side 1+cosB which is 1+1/sec which …
2. ### verifying trigonometric identities

How do I do these problems? Verify the identity. a= alpha, b=beta, t= theta 1. (1 + sin a) (1 - sin a)= cos^2a 2. cos^2b - sin^2b = 2cos^2b - 1 3. sin^2a - sin^4a = cos^2a - cos^4a 4. (csc^2 t / cot t) = csc t sec t 5. (cot^2 t / csc
3. ### trig

verify the identity: sec(beta)+ tan (beta)= cos(beta)/ 1-sin(beta)
4. ### pre calc

suppose beta is an angle in the second quadrant and tan beta=-2. Fine the exact vaule of sin beta and cos beta
5. ### Pre-Calculus

If sin(theta)=15/17 and cos(beta)=(-5/13 (both theta and beta are in quadrant II) find tan(theta+beta)
6. ### Trigonometry

Prove that tan (Beta) sin (Beta) + cos (Beta) = sec (Beta) Please explain.
7. ### Trigonometry

Find the exact value of tan2(Beta) if sin(Beta) = 5/13 (Beta in Quadrant II)
8. ### Trigonometry

Find the exact value of tan2(Beta) if sin(Beta) = 5/13 (Beta in Quadrant II)
9. ### trig

evaluate the following in exact form, where the angeles alpha and beta satisfy the conditions: sin alpha=4/5 for pi/2 < alpha < pi tan beta=7/24 for pie < beta < 3pi/2 answer choices A. sin(beta+alpha) B. tan(beta-alpha) …