Math(Pre=Calc)
posted by Kate .
The first term in a sequence of number is t1 = 4. The terms that follow are defined by the formula: tn  tn1 = 3n 2. Determine the value of t50.

so
t2 = t(1) + 3(2)  2 = 4 + 4 = 8
t3 = t2 + 3(3)2 = 8 + 7 = 15
t4 = t3 + 3(4)  2 = 15+10=25
t5 = t4 + 3(5)  2 = 25+13 = 38
so the sequence is
4 8 15 25 38 ...
first differences: 4 7 10 13 ....
second diff : 3 3 3 3 ...
ahhh, so the expression is quadratic.
see if can come up with a quadratic to express the sequence 4 8 15 25 38 ....
Respond to this Question
Similar Questions

MATH
Please help me with this!! The first term in a sequence of number is t1 = 4. The terms that follow are defined by the formula: tn  tn1 = 3n 2. Determine the value of t50. 
Math
The first term in a sequence of number is t1 = 4. The terms that follow are defined by the formula: tn  tn1 = 3n 2. Determine the value of t50. 
PreCalc
1) Determine the value of r (put this number in the first blank) and then determine the value of the 10th term of the geometric sequence. Do not use any decimals or mixed numbers in your answers. Reduce all fractions to lowest terms. … 
math30
Sequences 1)A sequence has a first term of 24 and every other term is one half of the previous term. a)Write the first four terms of the sequence. b)Find a recursive formula that defines this sequence. c)Find an explicit formula that … 
Maths
1..The first 2 terms of a geometric progression are the same as the first two terms of an arithmetic progression.The first term is 12 and is greater than the second term.The sum of the first 3 terms od the arithmetic progression is … 
math
51.A sequence t is defined where the first term is –4. Each successive term is 3 more than the term before it. (a)Write an explicit formula for the sequence t. (b)A second function is defined as s(n) = 2 + 2n. Compare the rates of … 
PreCalc/Trig...
The nth term of a geometric sequence is given by an = 1/4(4)^n1. Write the first five terms of this sequence. 
math
in an arithmetic sequence the common difference is equal to 2.the first term is also the first term of a geometric sequence. the sum of the first 3 terms of an arithmetic sequence and the sum of the first 9 terms of an arithmetic sequence … 
maths
The fifth term of an arithmetic sequence is 23 and the 12th term is 72. And they say first question 1.determine the first three terms of the sequences and the nth term. 2.what is the value of the 10th term. 3. Which term has a value … 
Maths
The first Arthmatic sequence is 23 and the 12th term is 72. Determine the first three terms in the sequence and the nth term and also Determine the Value of 10th term