# Physics

posted by .

A 2.00 kg block is pushed against a 400N/m spring, compressing it 22.0 cm. When the block is released, it moves along a frictionless horizontal surface and then up an incline. The angle of the incline is 37.0 degrees and the coefficient of kinetic friction with the incline is 0.25. Use the conservation of energy law to find a)the speed of the block just after leaving the spring B) the distance the block travels up the incline.

• Physics -

• Physics -

Crizia

## Similar Questions

Q. a 2.0 kg block is placed against a spring of force constant 800 N/m, which has been compressed 0.15m. The spring is released, and the block moves 1.2m along a horizontal surface with a coefficient of friction of 0.19. The block …
2. ### physics

[20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless …
3. ### College Physics

A block with mass m = 2.00kg is placed against a spring on a frictionless incline with angle (30 degrees). (The block is not attached to the spring.) The spring with spring constant k = 19.6 N/cm, is compressed 20.0 cm and then released. …
4. ### Physics

A block with mass m = 2.00kg is placed against a spring on a frictionless incline with angle (30 degrees). (The block is not attached to the spring.) The spring with spring constant k = 19.6 N/cm, is compressed 20.0 cm and then released. …

A horizontal spring with a spring constant of 200.0 N/m is compressed 25.0 cm and used to launch a 3.00 kg block across a frictionless surface. After the block travels some distance, the block goes up a 32 degree incline that has a …

A horizontal spring with a spring constant of 200.0 N/m is compressed 25.0 cm and used to launch a 3.00 kg block across a frictionless surface. After the block travels some distance, the block goes up a 32 degree incline that has a …