# Physics

posted by .

Block B weighs 716 N. The coefficient of static friction between block and table is 0.31. Assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.
The figure has block B on a table and to the right there is a knot in the string from which block A hangs. A 30 degree angle is made from the knot to a wall on the right.

I'm taking physics as a 5 week summer course and we just learned forces and motion today. However, I am really confused and none of the example problems in the notes are like this... I would appreciate it if someone could explain this to me.

• Physics -

Since we know that block B is on the verge of sliding, the maximum weight that can he held is 716N*0.31= 221.96 N. And since the knot is not moving, (no acceleration, that means the force of 221.96N is also the same for the rope from the knot to the wall. And with a little trigonometry, you can solve for force on A, which is 221.96* tan (30) = opposed side which is the force on A, so that means A must equal 128.15N

## Similar Questions

1. ### physics

Block B weighs 708 N. The coefficient of static friction between block and table is 0.32. Assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.
2. ### physics

Consider the system shown in the figure. Block A has weight 4.91 N and block B has weight 2.94 N. Once block B is set into downward motion, it descends at a constant speed. Assume that the mass and friction of the pulley are negligible. …
3. ### Physics, Science

A 26 kg block is connected to an empty 1 kg bucket by a cord running over a frictionless pulley. The coefficient of static friction between the table and the block is 0.435 and the coefficient of kinetic friction between the table …
4. ### Physics

Block B in the figure below weighs 713 N. The coefficient of static friction between block and table is 0.20. Assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be …
5. ### Physics

A 0.5 kg wooden block is placed on top of a 1.0 kg wooden block. The coefficient of static friction between the two blocks is 0.35. The coefficient of kinetic friction between the lower block and the level table is 0.2. What is the …
6. ### @ elena

In the figure the coefficient of static friction between mass (MA) and the table is 0.40, whereas the coefficient of kinetic friction is 0.28 ?
7. ### Physics

A block of mass m1 is on top of a block of mass m2. Block 2 is connected by an ideal rope passing through a pulley to a block of unknown mass m3 as shown. The pulley is massless and frictionless. There is friction between block 1 and …
8. ### Physics

Block A in the figure weighs 48.0N . The coefficient of static friction between the block and the surface on which it rests is 0.250. The weight w is 6.00N and the system remains at rest. -Find the friction force exerted on block A. …
9. ### Physics

Block A is 4.5 kg and Block B is 2.25 kg. a. determine the mass of block C that must be placed on block A to keep it from sliding if the coefficient of static friction between block A and the table is 0.2 b. If the coefficient of kinematic …
10. ### Physics

Block B in the figure weighs 739 N. The coefficient of static friction between block and table is 0.34; angle θ is 26°; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the …

More Similar Questions