Calculus : Derivative
posted by Akash .
If tan^1(x^2y^2/x^2+y^2) = a, prove that dy/dx = x(1  tan a)/y(1 + tan a)
Please solve!!!
Respond to this Question
Similar Questions

calculus
can anyone tell me if tan1x= 1 over tan x? 
calculus
find dy/dx y=ln (secx + tanx) Let u= secx + tan x dy/dx= 1/u * du/dx now, put the derivative of d secx/dx + dtanx/dx in. You may have some challenging algebra to simplify it. Use the chain rule. Let y(u) = ln u u(x) = sec x + tan x … 
Trigonometry
Find the exact value of tan(ab) sin a = 4/5, 3pi/2<a<pi; tan b = sqrt2, pi/2<b<pi identity used is: tan(ab)=(tan atan b)/1+tan a tan b simplify answer using radicals. (a is alpha, b is beta) 
Maths Calculus Derivatives
Find the first derivative for the following functions 1) f(x) = sin(cos^2x) cos(sin^3x) 2) f(x) = ( tan 2x  tan x ) / ( 1 + tan x tan 2x ) 3) f(x) = sin { tan ( sqrt x^3 + 6 ) } 4) f(x) = {sec^2(100x)  tan^2(100x)} / x 
calculus
So I am suppose to evaulate this problem y=tan^4(2x) and I am confused. my friend did this : 3 tan ^4 (2x) d sec^ 2x (2x)= 6 tan ^4 (2x) d sec^2 (2x) She says it's right but what confuses me is she deriving the 4 and made it a three? 
Trigonometry
1.Solve tan^2x + tan x – 1 = 0 for the principal value(s) to two decimal places. 6.Prove that tan y cos^2 y + sin^2y/sin y = cos y + sin y 10.Prove that 1+tanθ/1tanθ = sec^2θ+2tanθ/1tan^2θ 17.Prove that … 
precalculus
For each of the following determine whether or not it is an identity and prove your result. a. cos(x)sec(x)sin^2(x)=cos^2(x) b. tan(x+(pi/4))= (tan(x)+1)/(1tan(x)) c. (cos(x+y))/(cos(xy))= (1tan(x)tan(y))/(1+tan(x)tan(y)) d. (tan(x)+sin(x))/(1+cos(x))=tan(x) … 
Trigonometry desperate help, clueless girl here
2. solve cos 2x3sin x cos 2x=0 for the principal values to two decimal places. 3. solve tan^2 + tan x1= 0 for the principal values to two decimal places. 4. Prove that tan^2(x) 1 + cos^2(x) = tan^2(x) sin^2 (x). 5.Prove that tan(x) … 
calculus
If limit as delta x approaches 0 of tan(0+Δx)tan(0)/Δx =1 which of the following is false: d/dx [tanx]=1 the slope of y = tan(x) at x = 0 is 1 y = tan(x) is continuous at x = 0 y = tan(x) is differentiable at x = 0 
math 105
Prove that tan(A+B+C) =(tan A + tan B tan C  tanAtanBtanC) ÷(1tanAtanBtanBtanCtanAtanC)