MATH

posted by .

Find the only positive integer whose cube is the sum of the cubes of three positive integers immediately preceding it. Find this positive integer. Your algebraic work must be detailed enough to show this is the only positive integer with this property

  • MATH -

    The property translates to the following equation:

    x^3-(x-1)^3-(x-2)^3-(x-3)^3=0
    Expanding:
    -2x^3+18x^2-42x+36 = 0
    2(-x³+9x²-24x+18)=0
    which factorizes to:
    -2(x-6)(x^2-3x+3)=0
    or simply:
    (x-6)(x^2-3x+3)=0

    The first factor gives x=6 (our answer), and the second factor is not further factorizable.
    Attempts to solve
    (x^2-3x+3)=0
    results in a complex number, so no other real roots exist.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math, algebra

    2a+2ab+2b I need a lot of help in this one. it says find two consecutive positive integers such that the sum of their square is 85. how would i do this one i have no clue i know what are positive integers.but i don't know how to figure …
  2. algebra

    Find two consecutive positive integers such that the sum of their squares is 85. n^2+(n+1)^2+2n = 85 n^2+n^2+2n+1=85 2n^2+2n=84 n^2+n=42 n^2+n-42=0 (n-6)(n+7)=0 n=6 n=-7 Is my work and answer correct?
  3. Maths

    Prove that a number 10^(3n+1) , where n is a positive integer, cannot be represented as the sum of two cubes of positive integers. thanx
  4. math

    Prove that a number 10^(3n+1) , where n is a positive integer, cannot be represented as the sum of two cubes of positive integers. thanx
  5. Discrete Math

    Let n be positive integer greater than 1. We call n prime if the only positive integers that (exactly) divide n are 1 and n itself. For example, the first seven primes are 2, 3, 5, 7, 11, 13 and 17. (We should learn more about primes …
  6. Math

    Paulo withdraws the same amount from his bank account each week to pay for lunch. Over the past four weeks, he withdrew one hundred twenty dollars. Which rule best applies to determine the change in his account each week?
  7. math

    Which statement is true? A.The sum of two positive integers is sometimes positive, sometimes negative. B.The sum of two negative integers is always negative. C.The sum of a positive integer and a negative integer is always positive.
  8. Math

    Tell whether the difference between the two integers is always, sometimes, or never positive. 1)Two positive integers. Never 2)Two negative integers. Sometimes. 3)A positive integer and a negative integer. Sometimes. 4)A negative integer …
  9. math

    Find the sum of the first one thousand positive integers. Explain how you arrived at your result. Now explain how to find the sum of the first n positive integers, where n is any positive integer, without adding a long list of positive …
  10. maths

    the non- decreasing sequence of odd integers {a1, a2, a3, . . .} = {1,3,3,3,5,5,5,5,5,...} each positive odd integer k appears k times. it is a fact that there are integers b, c, and d such that, for all positive integers n, aƱ = …

More Similar Questions