The wavelength of visible light varies from 0.40 μm to 0.70 μm as the color of the light changes from violet to red. Calculate the energy of a photon whose wavelength is 0.67 μm

HINT: From the wavelength and the speed of light, we can get the frequency. Then the energy is simply hf. Use Planck's constant h in the proper units.

E = hc/wavelength.

You don't need to go through the frequency if you use the above equation. Wavelength must be inserted in meters.

are the units for energy J*s

yes, if c is in m/s, and h is in joules-seconds

Energy is in J.

E = hc/w. h has units J*s. c is m/s. w is in m so we have J*s*m/s/m. m and s cancel to leave E in J.

the wavelength of the light 310nm. calculate the wave length in meters.

To calculate the energy of a photon, we can use the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the light.

First, we need to find the frequency of the light using the equation:

c = λf

Where c is the speed of light, λ is the wavelength, and f is the frequency.

Given that the speed of light is approximately 3.00 x 10^8 m/s, and the wavelength is 0.67 μm (0.67 x 10^-6 m), we can rearrange the equation to solve for f:

f = c/λ

Substituting the values, we have:

f = (3.00 x 10^8 m/s) / (0.67 x 10^-6 m)

Now, let's solve for f:

f ≈ 4.48 x 10^14 Hz

Now that we have the frequency, we can calculate the energy of the photon using the equation E = hf.

Given that Planck's constant, h, is approximately 6.63 x 10^-34 J·s, we can rearrange the equation to solve for E:

E = hf

Substituting the values, we have:

E = (6.63 x 10^-34 J·s) x (4.48 x 10^14 Hz)

Now, let's solve for E:

E ≈ 2.97 x 10^-19 J

So, the energy of a photon with a wavelength of 0.67 μm is approximately 2.97 x 10^-19 Joules.