# Help Evaluating Integrals

posted by .

1.) ∫ (2)/(x-4) dx

2.) ∫ sec^2x tanx dx

3.) ∫ 2 csc^2 xdx

4.) ∫ (3) / sqtr(x+3) dx

5.) ∫ (2x-1) / (x^2 - x)

• Help Evaluating Integrals -

5.) ç (2x-1) dx / (x^2 - x)

let x^2 -x = u
du = 2x -1

Integral = ç du/u = ln u = ln(x^2-u)

## Similar Questions

1. ### Calculus - evaluating integrals

I'm really having trouble with this current topic that we're learning. Any explanations are greatly appreciated. Evaluate the integrals: 1.) ∫ (2-2cos^2x) dx 2.) ∫ cot3x dx 3.) ∫ ((e^(sqrt x) / (sqrt x) dx))
2. ### Integral Help

1.) ∫ (sin x) / (cos^2 x) dx 2.) ∫ (1) / (1+x^2) dx 3.) ∫ xe^x^2 dx 4.) ∫ x^2 sinx dx 5.) ∫ (lnx) / (x) dx
3. ### Calculus 2 correction

I just wanted to see if my answer if correct the integral is: ∫(7x^3 + 2x - 3) / (x^2 + 2) when I do a polynomial division I get: ∫ 7x ((-12x - 3)/(x^2 + 2)) dx so then I use u = x^2 + 2 du = 2x dx 1/2 du = x dx = ∫7x …
4. ### calculus (check my work please)

Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫ tan(x)sec(x)[sec^4(x)-sec^2(x)] …
5. ### Calculus AP

I'm doing trigonometric integrals i wanted to know im doing step is my answer right?
6. ### physics

1.∫ csc (u-π/2) cot (u-π/2) du. 2.∫ sec^2(3x+2)ds 3.∫ √3-2s ds 4. ∫ 12(y^4+y4y^2+1)^2 (4^3+2y) dy use u= y^4+4y^2+1
7. ### Calculus 2 Trigonometric Substitution

I'm working this problem: ∫ [1-tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)-[(sin^2x/cos^2x)/(1/cosx) ∫cosx-sinx(sinx/cosx) ∫cosx-∫sin^2(x)/cosx sinx-∫(1-cos^2(x))/cosx sinx-∫(1/cosx)-cosx sinx-∫secx-∫cosx …
8. ### Calculus

Alright, I want to see if I understand the language of these two problems and their solutions. It asks: If F(x) = [given integrand], find the derivative F'(x). So is F(x) just our function, and F'(x) our antiderivative?
9. ### Calculus

Which of the following integrals cannot be evaluated using a simple substitution?
10. ### Calculus

Which of the following integrals represents the volume of the solid formed by revolving the region bounded by y=x^3, y=1, and x=2 about the line y=10?

More Similar Questions