posted by .

Evaulate ∫5sinx+cos(5x)dx

  • calculus -

    how about

    -5cos x + (1/5)sin 5x + c

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math integrals

    What is the indefinite integral of ∫ [sin (π/x)]/ x^2] dx ?
  2. Integral Help

    1.) ∫ (sin x) / (cos^2 x) dx 2.) ∫ (1) / (1+x^2) dx 3.) ∫ xe^x^2 dx 4.) ∫ x^2 sinx dx 5.) ∫ (lnx) / (x) dx
  3. Calculus AP

    hi again im really need help TextBook: James Stewart:Essential Calculus, page 311. Here the problem #27: First make a substitution and then use integration by parts to evaluate the integral. Integral from sqrt(pi/2) TO sqrt(pi)of θ^3 …
  4. Calculus AP

    Use the table of integrals to find int cos^4 3x dx I found the table: ∫cos^n u du = (1/n)cos^(n-1)u sinu + (n-1/n)∫sin^(n-2)u du = 1/4 cos^(4-1)u sinu + (4-1/4)∫sin^(4-2) u du so what i did the problem: let u=3x then …
  5. calculus II

    ∫ tan^2 x sec^3 x dx If the power of the secant n is odd, and the power of the tangent m is even, then the tangent is expressed as the secant using the identity 1 + tan^2 x = sec^2 x I thought that since tan is even and sec is …
  6. Calculus 2 Trigonometric Substitution

    I'm working this problem: ∫ [1-tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)-[(sin^2x/cos^2x)/(1/cosx) ∫cosx-sinx(sinx/cosx) ∫cosx-∫sin^2(x)/cosx sinx-∫(1-cos^2(x))/cosx sinx-∫(1/cosx)-cosx sinx-∫secx-∫cosx …
  7. Calculus

    Alright, I want to see if I understand the language of these two problems and their solutions. It asks: If F(x) = [given integrand], find the derivative F'(x). So is F(x) just our function, and F'(x) our antiderivative?
  8. Calculus

    Evaluate ∫ (cos(x))^(1/2)sin(x)dx Let u = cos(x)?
  9. Calculus

    Which of the following integrals represents the volume of the solid formed by revolving the region bounded by y=x^3, y=1, and x=2 about the line y=10?
  10. Calculus

    Integrate 1/sinx dx using the identity sinx=2(sin(x/2)cos(x/2)). I rewrote the integral to 1/2 ∫ 1/(sin(x/2)cos(x/2))dx, but I don't know how to continue. Thanks for the help. Calculus - Steve, Tuesday, January 12, 2016 at 12:45am …

More Similar Questions