# physics

posted by .

A 0.20-kg mass is hung from a vertical spring of force constant 55 N/m. When the
spring is released from its unstretched equilibrium position, the mass is allowed to
fall. Use the law of conservation of energy to determine
(a) the speed of the mass after it falls 1.5 cm
(b) the distance the mass will fall before reversing direction

• physics -

The weight is
F = M g = 1.96 N
The equilibrium deflection is
Xe = F/k = 3.56*10^-2 m = 3.56 cm.
It will fall to twice that deflection.

Spring and gravitational potential energy, and kinetic energy, are zero when it is initially dropped

(a) The initial total energy, relative to the initial position, is zero.

After falling x = 0.015 m,
GravPE + SpringPE + KE = 0
-M g x + (1/2)kx^2 + (M/2) V^2 = 0

Solve for V.

(b) For max deflection, compute the other location where KE = 0

(1/2)kX^2 = M g X
X = 2 Mg/k, twice the equilibrium deflection

• physics -

ETi=ETf
Ek+Eg+Ee =Ek+Eg+Ee
Intial/final speed is zero, and having a ref point from the bottom, hf is zero and xi will be zero since in the beging the spring is at equiibrim. Finally ur hi=xf, since the strech will be the distaince traveled.
From this info and the equation we can get:

Eg+Ee= Eg+Ee
mghi+0.5(k)(xi)^2 = mghf+0.5(k)(xf)^2
mghi=0.5(k)(hi)^2
mg=0.5(k)(hi)
mg/0.5(k)=hi
sub in values to get
(0.20)(9.80)/(0.5)(55)=hi
0.071 meters= hi

## Similar Questions

1. ### Physics Problem

A 3.00-kg mass is fastened to a light spring that passes over a pulley. They pulley is frictionless, and its inertia may be neglected. The mass is released from rest when the spring is unstretched. If the mass drops 10.0cm before stopping, …
2. ### Physics

A spring is hung from a ceiling, and an object attached to its lower end stretches the spring by a distance of 5.00 cm from its unstretched position when the system is in equilibrium. If the spring constant is 54.1 N/m, determine the …
3. ### physics

A mass of 2 kg is hung from the lower end of a vertical spring and extends it by 40 cm. The mass is now pulled down a further 20 cm and is then released from rest so that it oscillates about the equilibrium position. Determine : a) …
4. ### Physics

A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equilibrium point and released. Determine a). the spring constant, k, b). the maximum velocity of the mass, …

A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equilibrium point and released. Determine a). the spring constant, k, b). the maximum velocity of the mass, …
6. ### physics

A 0.40 kg mass is attached to a spring with force constant 26 N/m and released from rest at a distance of 3.2 cm from the equilibrium position Use conservation of energy to find the speed of the spring when it is halfway to the equilibrium …
7. ### mechanics: simple harmonic oscillation

Consider an ideal spring that has an unstretched length ℓ and a spring constant k. Suppose the spring is attached to a mass m that lies on a horizontal frictionless surface. The spring-mass system is compressed a distance of …
8. ### Physics

One end of a spring is attached to the ceiling. The unstretched length of the spring is 10.0 cm. A 2.0 kg mass is hung from the other end of the spring. It is slowly lowered until it comes to rest. At this point the spring is 15 cm …
9. ### Physics

This assignment is about energy. But one of the new things we’ve just learned about is spring forces, so there should be a question about them. So the first parts of this question are not about energy. One end of a spring is attached …
10. ### 1Physics

One end of a spring is attached to the ceiling. The unstretched length of the spring is 10.0 cm. A 2.0 kg mass is hung from the other end of the spring. It is slowly lowered until it comes to rest. At this point the spring is 15 cm …

More Similar Questions

Post a New Question