MATH

posted by .

Region A that on xy-plane is bounded by two (2) curves and a line. The curves are y=x^3-2x+3 and y=-x^2+3 while the line is x=0. It is located in the first quadrant of xy-plane. Determine the area of region A.

• MATH -

Make a sketch and then solve for the intersection of the two curves

x^2 - 2x + 3 = -x^2 + 3
.....
x = 0 or x = 1

so
area = [integral] (-x^2 + 3 -(x^2 - 2x+3)) dx from 0 to 1
= integral (-2x^2 + 2x)dx from 0 to 1
= (-2/3)x^3 + x^2 | from 0 to 1
= -2/3 + 1 - 0
= 1/3

Similar Questions

1. Calc Jacobian

Thanks "I know that the xy region is the line x=y y=0 and y=1- x/2)" It is helpful to rewrite the region in the x-y plane by specifying the three lines and the endpoints, i.e. the points where they intersect. If you insert these points …
2. calculus

Sketch the region bounded by the curves y = x^2, y = x^4. 1) Find the area of the region enclosed by the two curves; 2) Find the volume of the solid obtained by rotating the above region about the x-axis; 3) Find the volume of the …
3. Calculus (Area Between Curves)

Find the area of the region bounded by the curves y^2=x, y-4=x, y=-2 and y=1 (Hint: You'll definitely have to sketch this one on paper first.) You get: a.) 27/2 b.) 22/3 c.) 33/2 d.) 34/3 e.) 14
4. Calculus (Area Between Curves)

Find the area of the region IN THE FIRST QUADRANT (upper right quadrant) bounded by the curves y=sin(x)cos(x)^2, y=2xcos(x^2) and y=4-4x. You get: a.)1.8467 b.) 0.16165 c.) 0.36974 d.) 1.7281 e.) 0.37859 Based on my calculations, I …
5. Calculus (Area Between Curves)

Find the area of the region IN THE FIRST QUADRANT (upper right quadrant) bounded by the curves y=sin(x)cos(x)^2, y=2xcos(x^2) and y=4-4x. You get: a.)1.8467 b.) 0.16165 c.) 0.36974 d.) 1.7281 e.) 0.37859
6. calculus

Consider the curves y = x^2and y = mx, where m is some positive constant. No matter what positive constant m is, the two curves enclose a region in the first quadrant.Without using a calculator, find the positive constant m such that …
7. geometry

Consider the region in Quadrant 1 totally bounded by the 4 lines: x = 3, x = 9, y = 0, and y = mx (where m is positive). Determine the value of c such that the vertical line x = c bisects the area of that totally bounded region. Needless …
8. geometry

Consider the region in Quadrant 1 totally bounded by the 4 lines: x = 3, x = 9, y = 0, and y = mx (where m is positive). Determine the value of c such that the vertical line x = c bisects the area of that totally bounded region. Needless …
9. math

Consider the region in Quadrant 1 totally bounded by the 4 lines: x = 3, x = 9, y = 0, and y = mx (where m is positive). Determine the value of c such that the vertical line x = c bisects the area of that totally bounded region. Needless …