Calculus (Checking Answer)

posted by .

Find the antiderivative by hand in each case.

S stands for the integral sign

A) S x*sqrt(10 + x^2) dx

So, u= 10 + x^2
du= 2xdx
du/2= xdx

(1/2) S sqrt(u) du
(1/2)*((u^(3/2))/(3/2))
(1/2)*(2/3)*(u^(3/2))
(1/3)*(u^(3/2))
= (1/3)*(10 + x^2)^(3/2) correct/incorrect?

B) S (x/(sqrt(2 - 3x)))dx

S (x)*(2 - 3x)^(-1/2)
u= 2 - 3x
du= -3dx
du/-3=dx
x= -((u - 2)/3)

=(-1/3) S (-((u - 2)/3))*(u^(-1/2))
=(-1/3) S ((-((u^(1/2)/3)-((2u^(-1/2))/3))
=(-1/3)*[((2/9)*(u^(3/2))-((4/3)*(u^(1/2))]
=[(-2/27)*((2 - 3x)^(3/2)) + (4/3)*((2 - 3x)^(1/2))] correct/incorrect?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Algebra

    Solve for s: h=(square root of 3)times s/2 and solve for h V= (pi)r squared h / 3 Solve for s: h=(square root of 3)times s/2 Multiply both sides by 2. 2h = (sqrt 3)*s*2/2 which cancels the 2 on the right. 2h = (sqrt 3)*s Now divide …
  2. Calculus

    Graph the curve and find its exact length. x = e^t + e^-t, y = 5 - 2t, from 0 to 3 Length = Integral from 0 to 3 of: Sqrt[(dx/dt)^2 + (dy/dt)^2] dx/dt = e^t - e^-t, correct?
  3. Calculus

    Find the volume of the solid whose base is the region in the xy-plane bounded by the given curves and whose cross-sections perpendicular to the x-axis are (a) squares, (b) semicircles, and (c) equilateral triangles. for y=x^2, x=0, …
  4. Calculus

    Evaluate the indefinite integral: 8x-x^2. I got this but I the homework system says its wrong:sqrt((-x-8)x)/(2*sqrt(x-8)*sqrt(x))*(((sqrt(x-8)*(x-4)*sqrt(x))-32*log(sqrt(x-8)+sqrt(x))
  5. Calc.

    Evaluate the definite integral. S b= sqrt(Pi) a= 0 xcos(x^2)dx I'm not sure if this is right?
  6. Calc.

    Evaluate the indefinite integral. Please check my work?
  7. Calc. Checking Answer

    Find the antiderivative by hand in each case. S stands for the integral sign I want to make sure I am doing these correctly. A) S x*sqrt(10 + x^2) dx So, u= 10 + x^2 du= 2xdx du/2= xdx (1/2) S sqrt(u) du (1/2)*((u^(3/2))/(3/2)) (1/2)*(2/3)*(u^(3/2)) …
  8. ap calculus

    Which of the following definite integrals gives the length of y = e^(e^x) between x=0 and x=1?
  9. Calculus

    S=Integral xdx/sqrt(x-1). I have proceeded thus- Put sqrt(x-1)=u then x=u^2+1 and dx/sqrt(x-1)=2du. S=(u^2+1)2du/u =(2u+2/u)du=u^2+2 log u +C =(x-1)+ 2 log sqrt(x-1)=(x-1)+log(x-1)+C Required answer is 2/3*(x+2)sqrt(x-1)+C Have I proceeded …
  10. Calculus - Integrating

    Question: ∫(x^2)/sqrt(x^2+1) u=x^2+1 , x^2= u-1, du=2xdx ∫(u-1)/sqrt(u) , expand ∫u/sqrt(u) - 1/sqrt(u) Integrate: 2/3(u^(3/2)) - 2u^(1/2) + c My answer: [ 2/3(x^2+1)^(3/2) - 2(x^2+1) + c ] When I took the derivative of this …

More Similar Questions