# Math

posted by .

tan(x)=5 sin(x) for interval -π < x < π

• Math -

tan(x)=sin(x)/cos(x)

sin(x)/cos(x)=5sin(x) Divide withsin(x)

1/cos(x)=5

1=5*cos(x) Divide with 5

cos(x)=1/5

cos(x)=0.2

OR

1/cos(x)=5

sec(x)=5

• Math -

The only choices were A) 0, 1.571 B) -1.571, 0, 1.571 C) -1.369, 0, 1.369 D) 0, 1.369

• Math -

tan(0)=0
sin(0)=0

tan(0)=5*sin(0)

0=0

tan(-alpha)= -tan(alpha)

sin(-alpha)= -sin(alpha)

tan(-1.3694384)=5 sin(-1.3694384)

Answer C) C) -1.369,0,1.369 is correct

## Similar Questions

1. ### Math

Evaluate *Note - We have to find the exact value of these. That I know to do. For example sin5π/12 will be broken into sin (π/6) + (π/4) So... sin 5π/12 sin (π/6) + (π/4) sin π/6 cos π/4 + cos …
2. ### Math integrals

What is the indefinite integral of ∫ [sin (π/x)]/ x^2] dx ?
3. ### Math

Write an equation of the tangent function with period (3π)/8, phase shift -π/5, and vertical shift -2. a. y=tan((8x)/3 - (8π)/15) -2 b. y=tan((8x)/3 + (8π)/15) -2 c. y=tan((16x)/3 +(3π)/80) -2 d. y=tan((8x)/3 …
4. ### Precalculus

Use one of the identities cos(t + 2πk) = cos t or sin(t + 2πk) = sin t to evaluate each expression. (Enter your answers in exact form.) (a) sin(19π/4) (b) sin(−19π/4) (c) cos(11π) (d) cos(53π/4) …
5. ### Trig Help!

Question: Trying to find cos π/12, if cos π/6 = square root 3 over 2, how to find cos π/12 using DOUBLE angle formula?
6. ### Trigonometry

IM STUCK ON THESE :( 1. What is the equation for shifting the standard sine curve +2 units horizontally?
7. ### Calculus

How do I find the critical values? y= 4/x + tan(πx/8) What I did is I simplified it to y= 4x^-1 + tan(πx/8) then I took the derivative y'= -4x^-2 + (π/8)(sec(πx/8))^2 Then I simplied it y'= -4/x^2 + (π/8)(sec(πx/8))^2