Physics

posted by .

Search: The figure shows three crates being pushed over a concrete floor by a horizontal force of F magnitude 440 N. The masses of the crates are m1 = 30.0 kg, m2 = 10.0 kg, and m3 = 20.0 kg. The coefficient of kinetic friction between the floor and each of the crates is 0.700. (a) What is the magnitude F32 of the force on crate 3 from crate 2? (b) If the crates then slide onto a polished floor, where the coefficient of kinetic friction is less than 0.700, is magnitude F32 more than, less than, or the same as it was when the coefficient was 0.700?

  • Physics -

    Since the Figure is not available to us, we need to know which of the crates receives the external 440 N force.

    Problems of this sort can be solved by applying free-body-diagram equations of motion to each of the three crates, remembering that the forces between any two crates that are in contact are equal and opposite. This allows one to solve for all three unkowns: F32 = -F23, F12 = -F21, and the acceleration, a.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.20 with the floor. If the train is initially moving at a speed of 47 km/h, in how short a distance can the train be stopped at …
  2. physics

    The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.20 with the floor. If the train is initially moving at a speed of 47 km/h, in how short a distance can the train be stopped at …
  3. Physics

    The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.35 with the floor. If the train is initially moving at a speed of 43 km/h, in how short a distance can the train be stopped at …
  4. Physics

    The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.34 with the floor. If the train is initially moving at a speed of 58 km/h, in how short a distance can the train be stopped at …
  5. physics

    Two wooden crates with masses are as shown are tied together by a horizontal cord. Another cord is tied to the first crate and it is pulled with a force of 199N at a angle of 20.0 degrees. Each crate has a coefficient of kinetic friction …
  6. physics

    Two crates A and B connected together by a light rope are pulled along a factory floor by an applied force, F. Crate A has a mass of 50 kg and the coefficient of friction (μ) between crate A and the floor is 0,25. Crate B has …
  7. physics

    Two crates rest on top of one another.There is a crate of mass 4.62 kg on top of another crate of mass 2.19 kg. The coefficient of friction between the lower crate and the floor is μk = 0.440 and the coefficient of static friction …
  8. physics

    Two crates rest on top of one another.There is a crate of mass 4.62 kg on top of another crate of mass 2.19 kg. The coefficient of friction between the lower crate and the floor is μk = 0.440 and the coefficient of static friction …
  9. physics

    Two crates rest on top of one another.There is a crate of mass 4.62 kg on top of another crate of mass 2.19 kg. The coefficient of friction between the lower crate and the floor is μk = 0.440 and the coefficient of static friction …
  10. physics

    Two crates rest on top of one another.There is a crate of mass 4.62 kg on top of another crate of mass 2.19 kg. The coefficient of friction between the lower crate and the floor is μk = 0.440 and the coefficient of static friction …

More Similar Questions